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Problem and motivation. A static type system can be an ex-
tremely powerful tool for a programmer, providing early error de-
tection, and offering strong compile-time guarantees on the behav-
ior of a program. However, compared to dynamic typing, static typ-
ing often comes at the expense of development speed and flexi-
bility, as statically-typed code might be more difficult to adapt to
changing requirements. Gradual typing is a recent and promising
approach that tries to get the best of both worlds [16]. The idea be-
hind this approach is to integrate an unknown type, usually denoted
by “?”, which informs the compiler that additional type checks may
have to be performed at run time. Therefore, the programmer can
gradually add type annotations to a program and controls precisely
how much checking is done statically versus dynamically. Gradual
typing thus allows the programmer to finely tune the distribution
of dynamic and static checking over a program. However, gradu-
alization of single expressions has more limited breadth. We argue
that adding full-fledged union and intersection types to a gradual
type system makes the transition between dynamic typing and static
typing smoother and finer grained, giving even more control to the
programmer. In particular, we are interested in developing grad-
ual typing for the semantic subtyping approach [10], where types
are interpreted as sets of values. In this approach union and in-
tersection types are naturally interpreted as the corresponding set-
theoretic operations, and the subtyping relation is defined as set-
containment, whence the name of set-theoretic types. This yields an
intuitive and powerful type system in which several important con-
structions —eg, branching, pattern-matching, and overloading—
can be typed very precisely. Set-theoretic types, however, exacer-
bate the shortcomings of static typing. In particular, type recon-
struction for intersection type systems is, in general, undecidable.
The consequence is that programmers have to add complete type
annotations for every variable, which may hinder their develop-
ment speed; all the more so given that union and intersection type
annotations can be syntactically heavy. Adding gradual typing to
set-theoretic types may help to alleviate this issue by providing a
way to relax the rigidity of certain type annotations via the addition
of a touch of dynamic typing, while keeping the full power of static
types for critical parts of code.

We said that adding set-theoretic types to a gradual type sys-
tem makes the transition between dynamic typing and static typing
smoother. This is for example the case for function parameters that
are to be bound to values of basic types: in the current setting, the
only way to gradualize their type is to use “?”, while with union
and intersection types more precise gradualizations become possi-
ble. We illustrate this fact in an ML-like language by progressively
refining the following example that we borrow from Siek and Vach-
harajani [19].

let succ : Int -> Int = ...
let not : Bool -> Bool = ...

let f (condition : Bool) (x : ?) : ? =
if condition then

succ x
else

not x

This example cannot be typed using only simple types: the type of
x as well as the return type of f change depending on the value
of condition. However, this piece of code is perfectly valid in a
gradual type system, the compiler will simply add dynamic checks
to ensure that the value bound to x can be passed as an argument
to succ or not according to the case. Moreover, it will also add
checks to ensure that the value returned by f is used correctly. Nev-
ertheless, there are some flaws in this piece of code. For example,
it is possible to pass a value of any type as the second argument of
f (the type system ensures that the first argument will always be a
Boolean). In particular, if one applies the function f to (a Boolean
and) a value of type string, then the application will always fail,
independently from the value of condition, and despite the fact
that the application is statically considered well-typed. This prob-
lem can be avoided by set-theoretic types, in particular by using the
union type Int | Bool to type the parameter x of the function so as
to ensure that every second argument of f that is neither an integer
nor a Boolean will be statically rejected by the type checker. This
is obtained by the following code

let f (condition : Bool) (x : (Int | Bool))
: (Int | Bool) =
if condition then

succ ((Int) x)
else

not ((Bool) x)

In order to ensure that the applications of succ and not are both
well typed we added two type casts that check at run-time whether
the argument has the required type and raise an exception other-
wise.

In this second definition of f we have ensured, thanks to union
types, that every application of f has now a chance to succeed.
However, this is obtained at the expense of the programmer who
has now the burden to insert in the code the type-cases/type-casts
necessary to ensure safety (in the sense established by Wright and
Felleisen [25]). By using set-theoretic types in conjunction with
gradual types, it is possible both to ensure that f will only be
applied to booleans or integers and to delegate the insertion of type
casts to the system. This is shown by the following piece of code
that our system will compile into the previous one.

let f (condition : Bool) (x : (Int | Bool) & ?)
: (Int | Bool) =
if condition then

succ x
else

not x

In this example, the variable x is of type ((Int | Bool) & ?),
where “&” denotes an intersection. This indicates that x has both
type (Int | Bool) and type ?. Intuitively, this means that the
function f accepts as a second argument a value of any type (which
is indicated by ?), as long as this value is also an integer or a
Boolean. The effect of having added “& ?” in the type of the
parameter is that the programmer is no longer required to add the
explicit casts in the body of the function: the system will take
care of it at compile time. The combination of a union type with



“& ?” to type a parameter corresponds to a programming style in
which the programmer asks the system to statically enforce that the
function will be applied only to arguments in the union type and
delegates to the system the dynamic checking, where/if necessary,
for each case in the union; and while adding explicit casts in a five-
line example such as the above is quite straightforward, in general
(eg, in thousand-line modules), it is not always so, whence the
interest of having a system that adds all and only the casts that are
necessary to ensure type safety. Finally, note that the return type of
f is no longer gradual (as it was in the first definition), since union
types allow us to define it without any loss of precision. This allows
the system to statically reject all cases in which the value expected
from f is neither an integer nor a Boolean and which, with the first
definition, would be detected only at run-time.

In all the examples above the return type of the function f can
be easily and automatically deduced and could, therefore, be omit-
ted. But there are cases in which providing the return type of a
function allows the system to deduce a better type and, thus, accept
more programs. This is particularly true in conjunction with inter-
section types, since they allow the programmer to specify different
return types for different argument configurations. Consider again
the function f above. Since it always returns either an integer or a
Boolean, we used as return type (Int | Bool). By using an inter-
section type it is possible to give f a more precise type in which the
return type of f depends on the type of x:

let f : (Bool -> (Int & ?) -> Int)
& (Bool -> (Bool & ?) -> Bool) =

λcondition. λx.
if condition then

succ x
else

not x

This time, in the body of f, the variable x has type (Int & ?)
| (Bool & ?), which is equivalent to ((Int | Bool) & ?).
Hence, the function can be defined with the same body as before,
and it accepts as arguments the same values. However, the return
type of f now directly depends on the type of x (more precisely,
on the type of the value bound to x): if it is of type Int, then the
function necessarily returns an integer (that is, if the application
does not fail), and the same goes for an argument of type Bool.

Having a return type that depends on the type of the input is
reminiscent of the typing of overloaded functions (also known as
“ad hoc polymorphism”). This correspondence is indeed a strong
one, since intersections of arrow types can be used to type over-
loaded functions (eg, see Benzaken et al. [1], Castagna et al. [3];
see also Forsythe [15] which uses a limited form of overloading
known as coherent overloading). As a matter of fact, our function
f is just a curried function that when applied to a Boolean argu-
ment returns an overloaded function. This can better be seen by
considering type equivalences: the type we declared above for f

(Bool -> (Int & ?) -> Int) & (Bool -> (Bool & ?) -> Bool)

is equivalent to (ie, it is both a subtype and a supertype of) the type

Bool -> ((Int & ?) -> Int) & ((Bool & ?) -> Bool))

Therefore an equivalent way to define f would have been

let f (condition : Bool)
: ((Int & ?) -> Int) & ((Bool & ?) -> Bool)) =
λx.if condition then

succ x
else

not x

which shows in a clear way that the application of f to a (necessar-
ily Boolean) argument returns an overloaded function whose result
type depends on the type of its argument: the two occurrences of
“?” in the input types of the overloaded function indicate that, in
both cases (ie, whatever the type of the argument is), some dynamic

cast may be needed in the body of the function and, thus, may have
to be added at compile-time.

Related work and uniqueness of the approach. Our work com-
bines set-theoretic types with gradual typing. The part on set-
theoretic types is based on the semantic subtyping framework, as
presented by Frisch et al. [10], while for what concerns the addi-
tion of gradual typing we followed and adapted the technique based
on abstract interpretation by Garcia et al. [12] called “Abstracting
Gradual Typing” (AGT). However, the approach proposed by Gar-
cia et al. [12] focuses on consistent subtyping, whereas dealing with
set-theoretic types requires more precise properties —most notably
for lemmas related to term substitution— hence the need for new
operators and for a specific dynamic semantics.

There exist other attempts at integrating gradual typing with
union and/or intersection types, but none is as general as the ap-
proach we propose, insofar as they just consider either a partial
set of type connectives or limited forms thereof. Siek and Tobin-
Hochstadt [17] study gradual typing for a language with type-case,
union types, and recursive types. Intersection and negation types
are not considered and union types are in a restricted version, since
it is not possible to form the union of any two types but just types
with different top-most constructors: so for instance it is not possi-
ble to union two arrows. This limitation is reflected in the type-case
expression which can only check the topmost constructor of a value
(eg, integer, product, arrow, ...) but not its type. The different cases
of the type-case construction of Siek and Tobin-Hochstadt [17] are
functions that, if selected, are applied to the matched value; this
allows a form of occurrence typing [23]. Our type-case is more
general than the one by Siek and Tobin-Hochstadt [17] since ex-
pressions can be checked against any type, and occurrence typing
can be encoded. For the sake of simplicity we considered neither
product nor recursive types (though all their theory is already de-
veloped by Frisch et al. [10]) and disregarded blame, but otherwise
our work subsumes the one by Siek and Tobin-Hochstadt [17].

Jafery and Dunfield [13] present a type system that contains
both refinement sums and gradual sums. Similarly to our approach,
they define a gradually-typed source language and a type-directed
translation to a target language that contains casts. However, their
approach is very different from ours: their sums are disjoint unions
in which elements are explicitly injected by a constructor; as such,
their sums do not have the set-theoretic property of unions (eg, they
are neither idempotent, nor commutative, nor satisfy usual distribu-
tion laws). Also, gradual typing is confined to sum types, since the
motivation of their work is to allow the programmer to gradually
add refinements that make the enforcement of exhaustive pattern
matching possible, a problem that does not subsists in our work
or, more generally, in languages with set-theoretic types where ex-
haustiveness of pattern matching is easily verifiable. Finally, Jafery
and Dunfield [13] leave intersection types as future work.

Our approach also relates to a recent work by Lehmann and
Tanter [14], which presents a way to combine gradual typing with
full-fledged refinement types, where formulae can contain unions,
intersections, and negations. They encounter problems similar to
ours, most notably when trying to find a suitable Galois connection
to use AGT. However, our work focuses on set-theoretic types
which behave differently from refinement types, in particular when
it comes to subtyping, function types, or when evaluating casts.

Results and contributions. The examples given in the first para-
graph provide a brief outline of the characteristics of the system we
studied. In a nutshell, our work develops a theory for gradual set-
theoretic types, that is, types that besides the usual type construc-
tors —eg, arrows, products, integers, ...— include a gradual “?” ba-
sic type and set-theoretic type connectives: union, intersection, and
negation (in the set-theoretic type approach negations are indisso-
ciable from unions and intersections). This amounts to defining and
deciding their subtyping relation, using them to type a core func-
tional language, and defining a compilation scheme that inserts all



and only the type casts required to ensure that every non-diverging
well-typed expression will either return a value or raise a cast error.

The first part of our work focuses on defining the syntax and
semantics of the types we are interested in. In particular, we use ab-
stract interpretation [8] to define the semantics of our gradual types,
following a technique introduced by Garcia et al. [12]. Formally,
the set STypes of static types and the set GTypes of gradual types
are inductively generated by the following grammars:

t ∈ STypes ::= b | t→ t | t ∨ t | t ∧ t | ¬t | 0 | 1
τ ∈ GTypes ::=? | b | τ → τ | τ ∨ τ | τ ∧ τ | ¬t | 0 | 1

where b ranges over the set of base types (eg, Int, Bool, ...). The
set STypes of static types, ranged over by s, t, . . . , is formed
by basic types, the type constructor “→” for function types, type
connectives for union, intersection and negation types, as well as 0
and 1 which denote respectively the bottom and the top type. The
set GTypes of gradual types, ranged over by σ, τ , . . . , is obtained
by adding to the static types the unknown type “?”, which stands
for the absence of type information (not to be confused with 0 or
1).

Using abstract interpretation, we define two functions γ (con-
cretization function) and α (abstraction function) such that:

γ : GTypes→P(STypes)

α : P(STypes)→ GTypes

Intuitively, the concretization function γ interprets a gradual type
as the set of static types obtained by replacing every occurrence of
the unknown type ? by some static type.

The concretization function can then be used to define a conser-
vative extension of static subtyping to gradual types. That is, given
the semantic subtyping relation ≤ defined by Frisch et al. [10], we
can define its conservative extension to gradual types ≤̃ as:

σ ≤̃ τ ⇐⇒ ∃(s, t) ∈ γ(σ)× γ(τ), s ≤ t
Based on this definition of gradual subtyping and of the con-

cretization function, we show two of our main results:

1. For every gradual type τ , the set (γ(τ),≤) is a closed sublat-
tice of (STypes,≤). In particular, every gradual type τ has a
maximal and a minimal concretization (denoted respectively by
τ⇑ and τ⇓). Moreover, these concretizations can be obtained in
linear time from the initial type τ .

2. As a corollary, gradual subtyping can be reduced in linear time
to deciding subtyping on set-theoretic types, since we have the
following equivalence:

σ ≤̃ τ ⇐⇒ σ⇓ ≤ τ⇑

Having defined subtyping for gradual set-theoretic types, the
second part of our work focuses on typing applications, and in par-
ticular, on defining the domain and the result type of an application.
To achieve this, we can “lift” the definitions given by Frisch et al.
[10] from static types to gradual types, using the same technique as
for subtyping. However, this is not immediate, since the operators
presented in Frisch et al. [10] are only defined for types in disjunc-
tive normal form, and the concretization function γ does not nec-
essarily produces types in this form. Therefore, to overcome this
problem, we defined a so-called partial applicative concretization
γ+
A

: GTypes→Pf (Pf (GTypes)), whose goal is to transform
a gradual type into a particular disjunctive normal form represented
as a finite set (the union) of finite sets (the intersections) of arrow
types. Intuitively, this concretization function returns the possible
interpretations of a gradual type as a function type, but in disjunc-
tive normal form. This allows us to deduce the domain and result
type of an application by lifting the definitions provided in Frisch
et al. [10].

The third and last part of our work is threefold. First, we de-
fine the syntax and typing rules for a gradually-typed language

that makes use of set-theoretic types. This language is a lambda-
calculus with explicit function interfaces (which allow the pro-
grammer to give functions multiple types, thus providing overload-
ing) and dynamic typecases (expressions that branch according to
the type of the evaluation of an expression). The typing rules for
this language are straightforward and use the previous definitions
of gradual subtyping and of the domain and result type of an ap-
plication. Second, we define the syntax, typing rules and semantics
of a cast language (or target language) which is a language that
incorporates dynamic typecasts. The point of these casts is to ver-
ify that a gradually-typed expression is always used in a consistent
way throughout the execution of a program. In particular, any re-
duction that would cause the program to be stuck should return a
cast error. Lastly, we define a compilation procedure that translates
a well-typed term of the gradually-typed language to a well-typed
term of the cast language. This compilation inserts all the necessary
casts to ensure that the execution of the gradually-typed term will
never be stuck. This is formalized by our two main results:

1. Compilation is type-preserving. That is, for every typing con-
text Γ, if e is an expression of the gradually-typed language
such that Γ ` e : τ and e compiles to e′ in the cast language,
then Γ ` e′ : τ .

2. Every well-typed term of the gradually-typed language com-
piles to a term that either diverges or reduces to a value or a cast
error.

To illustrate the behaviour of our system on an example, con-
sider the term e = (λ{Int→Int;(?\Int)→Bool}x. x) true, which
is a valid term in our gradually-typed lambda calculus. The first
step is to verify that this term is well-typed. Since it is an ap-
plication, we must ensure that the type of the argument is “com-
patible” with the type of the function, and that both sides of the
application are well-typed. Determining the type of the left hand
side is easy: in our language, the functions are explicitly typed;
therefore, the type of the left hand side of the application is sim-
ply the intersection of the types that appear in its interface, that is,
(Int→ Int)∧ ((? \Int)→ Bool). Intuitively, this means that if
the function is applied to an integer then it returns an integer, and
otherwise returns a boolean. Moreover, the presence of the dynamic
type ? informs the compiler that it must add all the checks neces-
sary to (dynamically) ensure that the function effectively returns a
boolean.
For the left hand side to be well-typed, the function must verify
its interface. That is, the body of the function must have type Int
under the hypothesis that x has type Int, and the body must have
type Bool under the hypothesis that x has type ? \Int. Both cases
hold, since ? \Int is a subtype of Bool (it is, actually, a subtype
of every type).
Moreover, if we compute the domain of the function, we obtain
Int∨ (? \Int), which is equivalent to ?. Since ? is a supertype of
every type, the function can accept any argument. Thus, we deduce
that the application is well-typed.

The second step consists in compiling this application and
adding the casts necessary to ensure that the program will not get
stuck. There are three subterms we can cast: the left hand side of
the application, the argument, or the body of the function. In this
case, we already know that the left hand side is a function. Thus
there is no need to cast it, but it might be the case that the type of
the left hand side is unknown and that we need to ensure dynami-
cally that it is a function. Moreover, we know that the function can
accept an argument of type Bool. Therefore, there is no need to
cast the argument either.
Now, consider the body of the function. Under the hypothesis that
x has type Int, it is trivially true that the body is well-typed, of
type Int. However, under the hypothesis that x has type ? \Int,
we are not completely sure that the body has type Bool, since its
type is partially unknown. Thus, we need to add a cast to ensure
that, in this case, the body has type Bool; but this cast should not



be inserted if the argument has type Int. The solution is to compile
the body of the function by a type-case that distinguishes the two
argument configurations, that is:

(λ{Int→Int ; (?\Int)→Bool}x.(y = x∈Int) ? y : 〈Bool〉 y) true

Finally, we can apply the semantics of the cast language to
evaluate this term. By reducing the application and substituting x
by true, we obtain:

(y = true∈Int) ? y : 〈Bool〉 y

Since true does not have type Int, this type case reduces to

〈Bool〉 true

This cast obviously succeeds, and the application returns true,
which is the expected result.

In conclusion, the main contribution of this work is the defi-
nition of the static and the dynamic semantics of a language with
gradual types and set-theoretic type connectives and the proof of
its soundness. In particular, we show how to lift the definition of
domain and result type of an application from set-theoretic types
to gradual types and likewise for the subtyping relation. We also
show that deciding subtyping for gradual types can be reduced in
linear time to deciding subtyping on set-theoretic types and that the
same holds true for all subtyping-related decision problems needed
for type inference (notably, computing domains and result types).
More generally, this work not only enriches gradual type systems
with unions and intersections and with the type precision that arises
from their use, but also proposes and advocates a new style of pro-
gramming with gradual types where union and intersection types
are used by the programmer to instruct the system to perform fewer
dynamic checks.
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