
1

Interference-aware Loop-free Routing For Mesh
Networks

Yaling Yang, Jun Wang and Robin Kravets
University of Illinois at Urbana-Champaign

{yyang8, junwang3, rhk}@cs.uiuc.edu

I. INTRODUCTION

In recent years, there has been an explosive growth in the
development of mesh networks to provide cheap yet high-
bandwidth Internet access to areas that does not have coverage of
high-bandwidth wired networks [7], [6]. Such mesh networks are
composed of static wireless nodes. Each of these wireless nodes
can be equipped with multiple radios, called a multi-radio/multi-
channel node, and each of the radios can be configured to
a different channel to enhance network capacity. All wireless
nodes cooperatively route each other’s traffic to the Internet
through one or more Internet Transit Access Points (TAPs),
which are gateways to the Internet.

To achieve good network performance, a critical design issue
for mesh networks is to balance traffic load among nodes. This
is because nodes in mesh networks are static. A poor choice of
paths may remain unchanged for a long time and create hot spots.
Hence, designing path weight functions (also called routing
metrics) to facilitate load-balanced routing is very important in
mesh networks and is the focus of our work.

To achieve load-balanced routing in mesh networks, path
weight functions must reflect the shared nature of wireless
channels and support easy calculation of loop-free paths. Ex-
isting path weight functions designed for mesh networks, such
as hop count, ETX [2] and WCETT [3], do not satisfy these
requirements. Hence, their performance is limited and some
may cause routing loops. Therefore, in this paper, we present
our theoretical studies of these requirements and design a
new path weight function, called Metric of Interference and
Channel-switching (MIC), that satisfies these requirements. Our
preliminary simulation results show that MIC’s performance is
substantially better than existing approaches. More details of our
work can be found in our technical report [11].

The remainder of the paper is organized as follows. In Section
II, we present the basic requirements for designing path weight
functions for mesh networks and show the limitations of several
existing solutions to satisfy these requirements. Sections III and
IV introduce our new routing metric MIC and demonstrate how
MIC can be used to balance network load. Section V discusses
how to extend MIC to capture multi-hop intra-flow interference.
Section VI evaluates the performance of MIC. In Section VII,
we conclude our work and discuss future directions.

II. DESIGNING PATH WEIGHT FUNCTIONS

To ensure that routing protocols based on path weight func-
tions have good performance, path weight functions must capture
the characteristics of interference in mesh networks, enable
efficient algorithms to calculate minimum weight paths, and not
create any forwarding loop. In this section, we introduce the
theories regarding these requirements and discuss how existing
path weight functions fail to satisfy these requirements.

ETT = 0.2

ETT = 0.5ETT = 0.5

CH = 1

ETT = 0.2 ETT = 0.2

ETT = 0.476
CH = 2

CH = 1 CH = 3 CH = 3

DCS2

TBAS1

CH = 3CH = 2

CH = 4

ETT = 0.5

ETT = 0.5

Fig. 1. Example topology for WCETT’s non-isotonicity.

A. Requirements of Path Weight Functions

Due to the shared nature of the wireless medium, both intra-
flow interference (interference between nodes on the path of
the same flow) and inter-flow interference (interference between
neighboring nodes) exist in mesh networks and affect the load on
nodes. Hence, to balance network load, the first requirement for
path weight functions is to capture both intra-flow and inter-flow
interference.

In addition, a path weight function must have a fundamental
property, called isotonicity [8], [9].

Definition 1: A weight function W (·) is isotonic if W (a) ≤
W (b) implies both W (a ⊕ c) ≤ W (b ⊕ c) and W (c′ ⊕ a) ≤
W (c′ ⊕ b) for all paths a, b, c, c′, where operator ⊕ represents
the concatenation of two paths.
This isotonicity property is needed to ensure efficient routing
algorithms, such as link-state or distance-vector algorithms,
can find minimum weight and loop-free paths based on the
path weight function. Without isotonicity, to find minimum
weight and loop-free paths requires algorithms with exponential
complexity, which is intractable even for small networks.

B. Existing Path Weight Functions

Although most existing path weight functions, such as hop
count, ETX [2] and ETT [3], are isotonic, they do not consider
interference between nodes and hence cannot balance load in
mesh networks.

The only interference-aware path weight function is
WCETT [3]. Unfortunately, WCETT only considers intra-flow
interference and is not isotonic. WCETT of a path p is:

WCETT (p) = (1 − β)
∑

link l∈p

ETTl + β max
1≤j≤k

Xj , (1)

where 0 ≤ β ≤ 1 and ETTl, as introduced in [3], is the
expected transmission time of a packet at link l. Xj is the
number of times that channel j is used along path p. While
ETT represents the capacity of wireless channels, Xj captures
the intra-flow interference of path p. However, since inter-flow
interference is not considered, WCETT may create severe inter-
flow interference by routing flows to dense areas.

The non-isotonic nature of WCETT can also cause severe
problems as shown by the topology in Figure 1. In this figure,
two numbers are associated with each link, the ETT and the



2

2w

w1

w1

w2

Node YNode X Node Z

PSfrag replacements

αIRUXY (1)

αIRUXY (2)

αIRUY X(1)

αIRUY X(2)

αIRUY Z(1)

αIRUY Z(2)

αIRUZY (1)

αIRUZY (2)

w1

w1w1

w1

w2

w2

w2

w2

0
0

0

0

0
0

0
0

0

00

0

X+

X−

Xi(1)

Xi(2)

Xe(1)

Xe(2)

Y+

Y−

Yi(1)

Yi(2)

Ye(1)

Ye(2)

Z+

Z−

Zi(1)

Zi(2)

Ze(1)

Ze(2)

Fig. 2. Virtual nodes

channel number (CH), respectively. Assuming β in Equation (1)
is set to 0.5, the minimum weight path from S1 to T is S1 →
B → T . However, due to the non-isotonicity of WCETT, when
node S1 uses Dijkstra’s algorithm to calculate its path to node
T, node S1 incorrectly chooses S1 → S2 → C → D → T as the
minimum weight path, indicated as the dotted arrows in Figure
1. When node S2 calculates its path to T , Dijkstra’s algorithm
correctly indicates S2 → S1 → B → T as the minimum weight
path, depicted as the shadowed arrows in Figure 1. Hence, a
forwarding loop is formed between S1 and S2.

III. MIC PATH WEIGHT FUNCTION

Due to the limitations of existing path weight functions, we
propose our novel path weight function, MIC, to support load-
balanced routing. MIC not only captures both intra-flow and
inter-flow interference, but also can be decomposed into isotonic
link weight assignments so that minimum weight paths can be
easily found and no forwarding loop can be created.

A. Definition of MIC

MIC is composed of two metrics: Interference-aware Re-
source Usage (IRU) and Channel Switching Cost (CSC). The
IRU metric captures the effects of inter-flow interference and
the CSC metric captures the impacts of intra-flow interference.

IRU is defined as follows:
IRUij(c) = ETTij(c) × |Ni(c)

⋃

Nj(c)|, (2)
where Ni(c) is the set of neighbors that node i interferes
with when it transmits on channel c. |Ni(c)

⋃

Nj(c)| is the
total number of neighbors that may be interfered with by the
transmission activities between node i and node j over channel
c. IRU captures the aggregated channel time of these neighbors
consumed by the transmission of the flow between nodes i and j,
essentially representing the inter-flow interference that the flow
may impose on the network.

To capture intra-flow interference, CSC at a node X is:
CSCX =

{

w1 if CH(prev(X)) 6= CH(X),
w2 if CH(prev(X)) = CH(X), (3)

0 ≤ w1 < w2, (4)
where prev(X) is the channel used by the previous hop of node
X and CH(X) is the channel that node X uses to transmit to the
next hop. The relationship w2 > w1 captures the fact that due to
intra-flow interference, using the same channel at node X and
prev(X) imposes a higher cost than using different channels.

Combining both IRU and CSC, we define MIC as follows:
MIC(p) = α

∑

link l∈p

IRUl +
∑

node i∈p

CSCi, (5)

where p stands for a path in the network and the positive factor
α is introduced to represent the trade-off between minimizing

intra-flow and inter-flow interference and is defined as follows:
α = 1/[N × min(ETT )], (6)

where N is the number of nodes in the network and min(ETT )
is the smallest ETT in the network, which can be estimated based
on the lowest transmission rate of wireless cards. By combining
this α with Equation (5), IRU is scaled up to be around the same
value range as CSC and its weight is normalized to the overall
network size.

B. Isotonic Decomposition of MIC

Although MIC captures interference, it is not isotonic if used
directly. Therefore, in this section, we map a real network
into a virtual network and decompose MIC into isotonic link
weight assignments in this virtual network. Due to this isotonic
decomposition, efficient algorithms, such as Bellman-Ford and
Dijkstra’s algorithms, can easily calculate minimum weight paths
using MIC without creating forwarding loops.

To decompose MIC, several virtual nodes are used to represent
the possible arrival/departure channels of packets at node X .
Then, MIC can be translated into isotonic link weight assign-
ments between these virtual nodes as shown in Figure 2.

For each channel c of a real node X , two virtual nodes Xi(c)
and Xe(c) are introduced, where Xi(c) represents that packets
arrive at node X from channel c and Xe(c) stands for that
node X transmits packets on channel c. Link (Xi(c), Xe(c))
represents that node X does not switch channel while forwarding
a packet and hence weight w2 is assigned to this link to capture
the CSC value in this case. Similarly, weight w1 is assigned to
link (Xi(c), Xe(c1)), where c 6= c1. To represent the IRU metric,
if node X is able to transmit to node Y using channel c, link
(Xe(c), Yi(c)) with weight IRUXY (c) is added between (Xe(c)
and Yi(c)). Node X also has two additional virtual nodes: X−

and X+. X− is the destination virtual node for flows destined
to the real node X and every Xi(c) has a link with weight 0
to X−. X+ is the source virtual node for flows that start at the
real node X and X+ has a link with weight 0 to every Xe(c).

By creating this virtual network, we essentially decompose
MIC into isotonic link weight assignments on the virtual links
between virtual nodes. Therefore, running Dijkstra or Bellman-
Ford algorithms on this virtual network creates minimum weight
paths for MIC and no forwarding loop can be formed.

C. Implementation of MIC

An important implementation issue of MIC is the calculation
of IRU , which includes the estimation of both ETT and
Ni. The calculation of ETT can be achieved by periodically
broadcasting hello messages at each node in the network as
shown by [2], [3]. These hello messages do not necessarily
increase the control message overhead of the network since they
can be piggybacked on the route update messages of routing
protocols. For Ni, since mesh networks are static, we can
determine whether two nodes are in each other’s interference
range by measuring the correlations between the broadcasting
rates of these two nodes at the time when the network is
established (see the work of Agarwal et. al [1] for details).

IV. USING MIC IN ROUTING PROTOCOLS

In theory, we have shown that MIC can be decomposed into
isotonic path weights in a virtual network so that minimum
weight virtual paths can be translated into minimum MIC



3

weight real paths. For implementation purposes, however, it
is still unclear how the routing tables can be built based on
the minimum weight virtual paths and how packets are routed
accordingly. In Section IV-A, we discuss the architecture of
routing tables and in Section IV-B, we discuss how to build
the routing tables.

A. Routing Table Architecture

In this section, we discuss the following implementation
issues: what information should be stored in routing tables and
how packets should be forwarded based on these routing tables.

1) Routing Entries: Each entry in a routing table of node X
is a tuple 〈dst, nexthop, channel〉, where dst is the destination
address and nexthop is the address of the next relaying node to
the destination. The channel entry represents the channel that
node X should use to send packets to nexthop.

2) Routing Tables: To ensure that packets follow minimum
weight paths, the forwarding decisions at node X must depend
on the channel assignment of the previous hop. Assuming that
node X has m radios configured to m different channels, each
of the m radios should have its own routing table. For example,
routing table T (c) is used to represent the routing choices for
packets arriving from channel c. In addition, since in mesh
networks every node can initiate traffic, node X must also know
how to route traffic initiated by itself. Therefore, we introduce
another routing table for forwarding node X’s own packets,
called the central routing table (T+). In total, a node has m + 1
routing tables.

Although the number of routing tables increases in MIC, such
an increase is acceptable since the number of radios in a node
is usually very small, resulting in a small number of routing
tables that a node needs to store. In addition, each routing
table is not very large due to the relatively small size of mesh
networks. Therefore, the memory used by routing tables should
not create a problem for mesh nodes. Furthermore, this increase
in the number of routing tables does not hurt packet forwarding
performance since node X does not need to search all routing
tables to make a forwarding decision. When a packet arriving
from a channel c needs to be forwarded, only one routing table
T (c) is searched to forward the packet.

B. Building Routing Tables

The major benefit of MIC compared to WCETT is that it can
be used with any routing algorithm, including both Bellman-Ford
or Dijkstra’s algorithms, and is guaranteed to find the minimum
weight paths without creating any forwarding loops.

1) Using Link-state Routing: Similar to traditional link-state
routing, each node propagates its connectivity information with
its neighbors to the whole network. The connectivity information
includes which channel the node can use to communicate with
its neighbors and the IRUs of these links. By gathering connec-
tivity information from other nodes, each node obtains global
knowledge of the network topology and is able to construct the
virtual network according to the description in Section III-B and
use this virtual network to build its routing tables.

To build routing tables for relaying traffic at node X , node
X runs Dijkstra’s algorithm at each of its ingress virtual nodes,
Xi(c), to build routing table T (c) for packets received from
channel c. The minimum weight path should be Xi(c) →
Xe(c0) → Yi(c0) → · · · → Z−, where c0 may or may not

be the same channel as c. By checking the third virtual nodes
on the virtual path, the routing entry can be built as 〈Z, Y, c0〉.
Similarly, the central routing table T+ for node X’s own traffic,
can be built by running Dijkstra’s algorithm at virtual node X+.

2) Using Distance-Vector Routing: In traditional distance-
vector routing, a node Y maintains and informs its neighbors
about the weights of its minimum weight paths to every node in
the network. When using MIC in distance-vector routing, node
Y maintains and informs its neighbors about the weights of its
minimum weight paths from its ingress virtual nodes (e.g., Yi(c)
for some channel c) to every node’s destination virtual node
(e.g., virtual node Z− at node Z). The information should have
a form of {Yi(c) → Z−, weight MIC(Yi(c), Z) } so that upon
receiving this information from Node Y , node X , a neighboring
node of node Y , can update its minimum weight paths from its
own ingress virtual nodes (e.g. Xi(c)) to every node’s destination
virtual node (e.g., Z− at node Z).
V. EXTENSION TO MULTIHOP INTRA-FLOW INTERFERENCE

In the design of the CSC metric for capturing intra-flow
interference, we only consider the interference between two
consecutive nodes on a path. However, depending on the carrier-
sensing range, intra-flow interference may also exist between
nodes that are further away. In this case, considering the
channel assignments at more hops before forwarding a packet
may further reduce intra-flow interference and improve network
performance. To do so, extensions to both the definition of
CSC and the routing protocols that use MIC are needed. These
extensions introduce costs in terms of increasing computation
complexity and memory consumption at nodes.

If intra-flow interference exists between nodes that are two
hops away, node X interferes with both nodes prev(X) and
prev2(X), where prev2(X) stands for the node that is the two
hop precedent of node X in a path. To capture the two-hop
interference on node X , Equation (3) is extended to:

CSCX =














w2, if CH(prev2(X)) 6= CH(X) = CH(prev(X)),
w3, if CH(prev2(X)) = CH(X) 6= CH(prev(X)),
w2 + w3, if CH(prev2(X)) = CH(X) = CH(prev(X)),
w1, otherwise,

(7)

0 ≤ w1 � w3 < w2, (8)
where w3 captures the intra-flow interference between nodes
prev2(X) and X and w2 captures the intra-flow interference
between nodes prev(X) and X . w3 < w2 since the further away
that two nodes are, the less interference exists between them. In
our simulation, we set w3 = 0.6w2 to capture this relationship.

To incorporate this new CSC definition, the construction of
the virtual networks and the actual routing procedures of MIC
need to be extended. Briefly speaking, to build virtual networks
to reflect the new CSC definition, different virtual nodes are
needed to represent the channel assignments at both prev2(X)
and prev(X). Consider a node X with m radios, each configured
to a different channel. At least m(m + 1) ingress virtual nodes
and m(m + 1) egress virtual nodes are need for this node. This
means that this node must maintain m(m + 1) + 1 routing
tables to consider two-hop intra-flow interference (For details
see our technical report [11]). To capture intra-flow interference
between nodes that are further away, the number of routing
tables and calculation complexity for computing routing tables
increase even further. Therefore, there is a trade-off between the



4

cost and benefit of considering multi-hop intra-flow interference.
In our simulations, we show that even though the interference
range is two-hop, the improvement of considering multihop
interference in MIC is not significant. Given the computation and
memory overhead associated with capturing multihop intra-flow
interference, considering multi-hop interference in MIC may not
be necessary.

VI. EVALUATION

To demonstrate the effectiveness of our new path weight
function MIC, our evaluation includes two parts using NS2
simulations [4]. First, we demonstrate the effectiveness of MIC
by comparing MIC’s performance with hop count, ETT and
WCETT. Then, we examine the sensitivity of MIC’s perfor-
mance to the choice of w2 and w3 in CSC definition.

A. Evaluation Metrics

To evaluate the performance of MIC, we adopt four different
evaluation metrics. The first two metrics are total network
throughput and average end-to-end packet delay. Although these
two metrics essentially reflect the average network service
quality to users, they cannot capture the load distribution in the
network. It is important to distribute the network load evenly so
that each user can have their fair amount of channel utilization
and no user is starved due to local congestion. Here, the channel
utilization of channel c at node i’s location, denoted as uc

i , is the
fraction of time that this channel is busy due to communication
activities at node i or node i’s neighboring nodes. We uses two
additional metrics: the maximum channel utilization (M ) and the
cost of channel utilization (Φ) to reflect the routing protocol’s
ability in achieving even distribution of channel utilization.
These two metrics are defined as follows:

M = max
i∈V,c∈C(i)

uc
i (9)

Φ =
∑

i∈V

∑

c∈C(i)

ϕ(uc
i ), (10)

where C(i) is the set of channels in node i and V is the set
of nodes in the network. ϕ(·) is the cost function of channel
utilization, whose definition may vary based on the needs of the
system. A commonly used cost function is a piece-wise linear
function [5], [10]:

ϕ(0) = 0 and

ϕ′(x) =































1 for 0 ≤ x < 1/3
3 for 1/3 ≤ x < 2/3

10 for 2/3 ≤ x < 9/10
70 for 9/10 ≤ x < 1

500 for 1 ≤ x < 11/10
5000 for 11/10 ≤ x < ∞.

(11)

The basic idea is that it is cheap to send flows over a channel
with low utilization. As the channel utilization increases, the
cost becomes more expensive since packet delay, delay jitter
and packet loss ratio at the channel increase and become more
sensitive to traffic bursts. As the channel utilization approaches
1.0, the cost function imposes very heavy penalties to represent
traffic congestion at this channel.

B. Performance of MIC

To examine MIC performance compared to hop count, ETT,
WCETT, we randomly generate ten 1000m× 1000m networks,
each with 100 nodes and 1 TAP. Every node has two radios and
each radio can be configured to one of three channels. In each

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5  10  15  20  25

N
or

m
al

iz
ed

 c
os

t Φ

Per Flow Rate (pkts/second)

ETT
MIC

MIC(2hop)
WCETT

Fig. 3. Cost (Φ) of MIC, MIC(2hop), ETT and WCETT , normalized
to the cost of hop count.

network, we have 20 flows destined to the Internet through the
TAP. The sources of the flows are randomly located and all flows
are CBR flows with 512 Byte packets. The routing protocol is
distance vector routing. For MIC, we set w2 = 0.5 and w3 = 0.3
(See Equations (3) and (7)). The transmission range is 250m
while the carrier-sensing range is 550m. The transmission rates
between neighboring nodes are related to the distance between
the nodes as shown in Table I.

Figure 3 depicts the cost of channel utilization (Φ), where MIC
(2hop) represents the extended version of MIC for considering
two hop intra-flow interference. Among all of the solutions, the
node utilization cost of MIC and MIC (2hop) is the lowest since
MIC balances network load and reduces both intra-flow and
inter-flow interference. The difference between MIC and MIC
(2hop) is very small and hard to distinguish. Figures 4(a), 4(b)
and 4(c) show the maximum channel utilization among nodes,
the total network throughput and the average end-to-end packet
delay. The performance of MIC and MIC (2hop) is much better
than the performance of ETT, WCETT and hop count due to
the balancing of traffic load. MIC (2hop) has a slightly better
performance than MIC due to its consideration of two-hop intra-
flow interference.

C. Sensitivity to w2 and w3 weight in CSC

To understand whether the performance of MIC is sensitive
to the choice of w2 and w3 weight in the definition of CSC,
in this set of simulation, we test different w2 and w3 configu-
rations on ten randomly generated 1000m × 1000m networks,
each with 100 nodes, 20 flows and 1 TAP. The range of w2

changes from 0.3 to 5 and the range of w3 changes from 0.18
to 3. Figures 5 and 6 show how the performance of MIC
and MIC(2hop), including the maximum channel utilization,
total network throughput and average end-to-end packet delay,
changes as the values of w2 and w3 vary. The variations of
w2 values has almost no impact on the performance of MIC.
However, MIC(2hop) is more sensitive to the changes in w2

and w3 and when w2 and w3 becomes too large (e.g., w2 = 5,
w3 = 3), MIC(2hop)’s performance can be even worse than
MIC. Considering the fact that MIC(2hop) is more expensive
and its improvement over MIC is not significant even if w2

and w3 is chosen appropriately, we conclude that MIC is more
preferably in real networks.

VII. CONCLUSIONS AND ONGOING WORK

In this work, we have proposed for the first time a path
weight function, MIC, that captures both inter-flow and intra-
flow interference. MIC enables efficient calculation for minimum
weight path and loop-free routing. Hence, MIC is compatible
with both Bellman-Ford and Dijkstra’s algorithms, which are



5

TABLE I
DISTANCE/RATE RELATIONSHIPS

Distance(m) 25 50 75 100 125 150 175 200 225 250 >250
Rate(Mbps) 54 48 36 24 18 12 9 6 2 1 0

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25

N
or

m
al

iz
ed

 m
ax

 c
ha

nn
el

 b
us

y 
fr

ac
tio

n

Per Flow Rate (pkts/second)

ETT
MIC

MIC(2hop)
WCETT

(a) Maximum channel utilization

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 5  10  15  20  25

N
or

m
al

iz
ed

 to
ta

l n
et

w
or

k 
th

ro
ug

hp
ut

Per Flow Rate (pkts/second)

ETT
MIC

MIC(2hop)
WCETT

(b) Total network throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5  10  15  20  25

N
or

m
al

iz
ed

 e
nd

-t
o-

en
d 

de
la

y

Per Flow Rate (pkts/second)

ETT
MIC

MIC(2hop)
WCETT

(c) Average end-to-end packet delay
Fig. 4. Performances of MIC, MIC(2hop), ETT and WCETT , normalized to the performance of hop count.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25

M
ax

im
um

 C
ha

nn
el

 U
til

iz
at

io
n

Per Flow Rate (pkts/second)

w2=0.3
w2=0.5

w2=2
w2=5

(a) Maximum channel utilization

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 5  10  15  20  25

T
ot

al
 n

et
w

or
k 

th
ro

ug
hp

ut
 (

pk
ts

/s
)

Per Flow Rate (pkts/second)

w2=0.3
w2=0.5

w2=2
w2=5

(b) Total network throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5  10  15  20  25

E
nd

-t
o-

en
d 

de
la

y 
(s

ec
on

d)

Per Flow Rate (pkts/second)

w2=0.3
w2=0.5

w2=2
w2=5

(c) Average end-to-end delay
Fig. 5. Sensitivity of MIC to weight w2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25

M
ax

im
um

 C
ha

nn
el

 U
til

iz
at

io
n

Per Flow Rate (pkts/second)

w2=0.3,w3=0.18
w2=0.5,w3=0.3

w2=2,w3=1.2
w2=5,w3=3

(a) Maximum channel utilization

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 5  10  15  20  25

T
ot

al
 n

et
w

or
k 

th
ro

ug
hp

ut
 (

pk
ts

/s
)

Per Flow Rate (pkts/second)

w2=0.3,w3=0.18
w2=0.5,w3=0.3

w2=2,w3=1.2
w2=5,w3=3

(b) Total network throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 5  10  15  20  25

E
nd

-t
o-

en
d 

de
la

y 
(s

ec
on

d)

Per Flow Rate (pkts/second)

w2=0.3,w3=0.18
w2=0.5,w3=0.3

w2=2,w3=1.2
w2=5,w3=3

(c) Average end-to-end delay
Fig. 6. Sensitivity of MIC(2hop) to weight w2 and w3

the most efficient algorithms for calculating minimum weight
paths. Our future work for MIC is to investigate the trade-off of
setting the w’s in Equation (3) and α in Equation (5). We will
investigate what are the appropriate w’s for real mesh networks
based on actual hardware measurements. We also want to further
study how α affects the delay and throughput of flows and the
overall load on the network. Finally, we will investigate how to
integrate MIC with mesh networks that have both mobile and
static nodes.

REFERENCES

[1] S. Agarwal, J. Padhye, V. Padmanabhan, L. Qiu, A. Rao, and B. Zill.
Estimation of Link Interference in Static Multihop Wireless Networks. In
ACM Internet Measurement Conference (IMC), 2005.

[2] D. S. J. D. Couto, D. Aguayo, J. Bicket, and R. Morris. A High-Throughput
Path Metric for Multi-Hop Wireless Routing. In ACM Mobicom, 2003.

[3] R. Draves, J. Padhye, and B. Zill. Routing in Multi-Radio, Multi-Hop
Wireless Mesh Networks. In ACM Mobicom, 2004.

[4] K. Fall and K. Varadhan. NS notes and documentation. In The VINT
Project, UC Berkely, LBL, USC/ISI, and Xerox PARC, 1997.

[5] B. Fortz and M. Thorup. Internet traffic engineering by optimizing OSPF
weights. In IEEE INFOCOM, Tel-Aviv, Israel, 2000.

[6] V. Gambiroza, B. Sadeghi, and E. Knightly. End-to-End Performance and
Fairness in Multihop Wireless Backhaul Networks. In ACM Mobicom,
2004.

[7] R. Karrer, A. Sabharwal, and E. Knightly. Enabling Large-scale Wireless
Broadband: The Case for TAPs. In Proceedings of HotNets, Cambridge,
MA, 2003.

[8] J. L. Sobrinho. Algebra and algorithms for QoS path computation and
hop-by-hop routing in the Inernet. In IEEE INFOCOM, 2001.

[9] J. L. Sobrinho. Network Routing with Path Vector Protocols: Theory and
Applications. In ACM SIGCOMM, pages 49–60, 2003.

[10] A. Sridharan, R. Guerin, and C. Diot. Achieving Near-Optimal Traffic
Engineering Solutions for Current OSPF/IS-IS Networks. In IEEE INFO-
COM, 2003.

[11] Y. Yang, J. Wang, and R. Kravets. Interference-aware Load Balancing
for Multihop Wireless Networks. Technical Report UIUCDCS-R-2005-
2526, Department of Computer Science, University of Illinois at Urbana-
Champaign, 2005.


