Speculative Parallelization Needs Rigor *

—Probabilistic Analysis for Optimal Speculation of Finite-State Machine Applications

Zhijia Zhao
College of William and Mary

zzhao®@cs.wm.edu

Abstract

Software-based speculative parallelization has shown effectiveness
in parallelizing certain applications. Prior techniques have mainly
relied on simple exploitation of heuristics for speculation. In this
work, we introduce probabilistic analysis into the design of specu-
lation schemes. In particular, by tackling applications that are based
on Finite State Machine (FSM) which have the most prevalent de-
pendences among all programs, we show that the obstacles for
effective speculation can be much better handled with rigor. We
develop a probabilistic model to formulate the relations between
speculative executions and the properties of the target computation
and inputs. Based on the formulation, we propose two model-based
speculation schemes that automatically customize themselves with
the best configurations for a given FSM and its inputs. The new
technique produces substantial speedup over the state of the art.

1. Introduction

Parallelization is key to computing efficiency and scalability.
Many programs, however, are hard to parallelize for their data
dependences. A typical solution is to circumvent the dependences
through speculation. Prior speculative parallelizations have mainly
relied on simple use of heuristics. In this work, we explore rigorous
analysis for tapping into the full potential.

Particularly, we concentrate on applications that are based on
Finite-State Machine (FSM)—when it comes to the prevalence of
dependences, FSM is truly unbeatable and gains a title “embarrass-
ingly sequential application” [5]. An FSM is an abstract machine
with a finite number of possible states. State transitions are often
dictated by a state-transition graph, with each node for a state and
each transition edge labeled with the symbol that triggers that tran-
sition. An example is the FSM in Figure 1 for matching regular
expression ([01]*00[01]*11[01]*)*, where 10 is repetition times.

Dependences exist between every two steps of an FSM com-
putation. They effectively chain through the computation, making
parallelization difficult. Consider the string matching example in
Figure 1. On a machine with p computing units, a natural way
to parallelize it is to evenly divide the input string, .S, into p seg-
ments and let p threads process them simultaneously, one segment
each. The difficulty is in the determination of the starting state for
a thread except the first one. For thread 2 to process its segment,
it has to know which of the 21 states it should use to start its pro-
cess. That state should be the state the FSM is in when thread 1
finishes processing the first segment. Such dependences inherently
prevent concurrent execution of any two threads. The difficulty mo-
tivates our focus on FSM applications: Solutions for parallelizing
such applications will naturally shed insights on circumvention of
dependences in general, hence provide new understanding to the
overall problem of speculative parallelization.

Meanwhile, tackling FSM applications is important for some
immediate usage. FSM computation is the core of many important
applications in various domains, including lexing in web browsers,
intrusion detection in networking security, Huffman decoding in

* This work is supervised by Xipeng Shen

multimedia processing, string pattern matching in document pro-
cessing, model checking for software and hardware testing [5, 14,
16, 19]. Effective parallelization is critical for their scalability and
responsiveness, especially as they run on low-frequency portable
devices that are embracing increasing parallelism.

State of the Art Among various forms of FSM, Deterministic
Finite Automaton (DFA) has been the focus in prior studies, thanks
to its common usage and capability to approximate other forms
of automaton (e.g. pushdown automaton [6].) We hence focus our
discussion on such FSMs.

As seen, the key difficulty for parallelizing FSM applications is
to determine the starting state for each thread. Researchers have at-
tempted to circumvent the difficulty by speculation—that is, letting
a thread T; guess the correct starting state to process segment .S,
i.e. the ending state after processing the preceding segment S;_1.
A random guess is subject to large errors. Researchers have found
it helpful to do a lookback—that is, thread 7; runs the FSM on
a number of ending symbols (called a suffix) of the preceding seg-
ment S;_1, and uses the ending state as the speculated starting state
for processing its own segment .S;. The lookback helps speculation
by offering some context. For instance, for the FSM in Figure 1, if
the suffix of S;_1 is “11”, a lookback will always finish at an even-
numbered state. It is easy to see that the correct ending state on that
segment S;_1 can only be an even-numbered state since transitions
to all the odd-numbered states require “0” as the trigger. The look-
back hence successfully prevents the speculation from taking these
impossible states.

Lookback-based speculative parallelization has been the central
technique of all state-of-the-art FSM parallelizations [14, 19]. As
Figure 2 shows, on an 8-core Intel system, the approach [14, 19]
yields almost ideal speedups on the Huffman decoding and XML
lexing. However, its performance is inconsistent. On the other five
programs , it produces speedups less than two. One of the programs,
div, even runs slower than its sequential execution.

The main reason for the inconsistent performance is the lack
of rigor in the designs of speculation, reflected in multiple dimen-
sions. The first is in the length of the suffix to examine by a look-
back. A longer suffix exposes more context, but at the same time
incurs more overhead. Previous studies [14, 19] select it by trying
several lengths in profiling runs, rather than systematically examin-
ing the full spectrum of possible lengths. The second dimension is
in the selection of the state for starting a lookback. Previous stud-
ies use the initial state of the FSM for all lookbacks, which limits
lookback benefits. For instance, suppose the correct starting state
for thread 2 to process segment S is state 12 in the FSM in Fig-
ure 1. A lookback by that thread on suffix “00” would end at state
2 if it starts from the initial state, state 0, causing a large dispar-
ity from the correct state. The third dimension is in the usage of
lookback results. All prior studies have used the ending state of
a lookback as the speculated starting state for processing the next
segment, which may not be the best choice. Without rigorous ways
to treat these factors and dimensions in the design, existing paral-
lelizations are vulnerable to FSM complexities, yielding the incon-
sistent speedups.

2012/4/15

Figure 1. An FSM for matching regular expression ([01]*00[01]*11][01]*)*°. Each circle represents an FSM state. State 0 is the initial state
(marked by the extra incoming edge), and state 20 is an acceptance state. The symbols on the edges indicate conditions for state transitions.

state of the art ez~ our result m—

T
CXXXXXXX
XL

1

%a%"
AT

T
XXX
X

T
XXX
OOTTOTOTT

i

T
XXX
000

20
o
Yal

9%
s R I
& M K

[
0%
¢

Speedup
O = N W hH oo N @
T
XX

huff lexing xval str1 str2 pval div

Figure 2. The speedups brought by the state-of-the-art speculation
scheme [19] are limited on some complex FSM applications. The
results are for 8 threads running on a 8-core machine (Section 5).

Overview of This Work In this work, we conduct a four-fold anal-
ysis into the nature of lookback-based speculative parallelizations.
At the core of the analysis is a stochastic perpective on the specu-
lative parallelization. The answers to its design questions should be
adaptive to the probabilistic properties of the target FSM.

First, we reveal that lookback is essentially a process that con-
verts context-free (no-suffix) state feasibilities into conditional fea-
sibilities with the suffix gradually put into consideration. We de-
velop a model of state feasibility propagation to formulate the ef-
fects and generate the conditional feasibilities (Section 2.1.)

Second, we introduce the concept of expected merging length
to help model the penalty of a speculation. An execution based
on a wrong starting state may not be completely useless. Consider
a string segment “00100010” to the FSM in Figure 1, if the true
starting state is state 4 but the speculation is state 5. It is easy
to see that although the processing of the first “001” is wrong,
after that, the execution ends at state 6 where the correct execution
would end. So, the process of the remaining string “00010” will
be correct. The penalty of the wrong speculation is reprocessing
the first three characters. Expected merging length characterizes the
statistical expectation of the number of state transitions needed for
two states to converge. Together with state feasibility, it enables the
computation of the expected risk of a speculation, making optimal
usage of lookback results possible (Section 2.2.)

Third, we integrate the expected speculation risk and lookback
overhead into a unified model for quantifying the statistical expec-
tation of the overall performance of a speculative execution (Sec-
tion 2.2.) It lays the foundation for analytically selecting the best
lookback length and starting state(s) for lookback.

Finally, based on the set of probabilistic models, we develop two
model-based speculation schemes, single-state and all-state look-
back schemes, which automatically customize themselves with the
configurations that best suite the probabilistic properties of an FSM
and its inputs so that the parallelization benefits can be maximized
(Section 3.) Both online and offilne profilings are considered. For
practical deployment, we integrate all the techniques into a library
with a simple API (Section 4.)

The benefits brought by the systematic analysis are significant.
It improves the speculation accuracy and minimizes the penalty of
wrong speculations. As shown in Figure 2, our technique boosts the
speedups by more than a factor of four over the state of the art. It
yields near optimum performance on five programs, and reverses
the slowdown on div to a 31% speedup (Section 5.)

The value of this work goes beyond the parallelization of FSM
applications, in two aspects. First, what this work produces is es-
sentially a rigorous approach to circumventing dependence chains
such that the parallelization benefits can be maximized. It is po-
tentially applicable to dependence chains in many kinds of appli-
cations. Second, the simple way of using heuristics is not unique
to FSM parallelization. Most speculative parallelizations beyond
FSM share the same manner. For instance, function-level specula-
tive executions use some recent history as the clue to predict the
return value of a function invocation. There is no rigorous analysis
on the best history length and other relevant factors [18]. This work
may shed insights to these speculative parallelizations.

2. Probabilistic Analysis of FSM Speculation

This section presents a probabilistic formulation for modeling the
expectation of the benefits from an FSM speculative parallelization.
The formulation enables assessment of different designs of specu-
lative parallelization, and hence lays the foundation for creating
optimal speculative schemes as later sections will show.

2.1 Essence of Lookback

Lookback, the key operation for speculation accuracy, is essentially
a process that tries to use the context (i.e., a suffix, C1C5 - - - C}) to
improve the knowledge about the chance for a state to be the correct
state at a given speculation point. For convenience, we introduce
the term feasibility as follows:

Definition 1. For a speculation point, the feasibility of a state s is
the probability for s to be the correct state at that point.

Without consideration of contexts, statistically, the feasibility
of a state s at every speculation point is the same, approximately
equaling the frequency for the FSM to visit that state in normal ex-
ecutions. We call these probabilities initial feasibilities or context-
free feasibilities, denoted with P°(s). Correspondingly, we call the
feasibilities after an [-long input string conditional feasibilities, de-
noted with Pl(s) (1> 0.

A straightforward way to estimate the conditional feasibility,
Pl(s) or equivalently P(real state=s | left string=C1C5 - - - Cy), is
to count the frequency for s to appear after a string C1Cs - - - Cy in
profiling runs. But because the value space of C1C - - - C} grows
exponentially with [, the approach is generally infeasible.

Our approach to estimate the conditional feasibility centers on
the following observation: State transitions essentially lead to an
increamental propagation of conditional feasiblities, with contexts
enriched gradually, as Figure 3 illustrates. For each state transition,
it inludes two feasibility updates, named inner-stage and inter-
stage updates, shown as the downward arrows and upright arrows
respectively in Figure 3. We leave their derivations in a technical
report [25] for lack of space.

2012/4/15

| —— > state transitions

————= : update of state feasibilities |

Time points: to 17
Input string: C; C>

State transitions:

Sls| C.>

Feasibility update: p(ro=s;)

p(ri=sjiL;=C1)

p(ro=sjRo=C1) p(r;=sjL;=C;,R;=C>)

p(ra=sjlL2=C;C2,R2=C3)

5] . tim-1 tm
Cn

20 ®) ®) ®) %O
: : / : :
©) o ©)

p(r2=sjL>=C;C2)

o

p(rm=s\Lm=C]...Cm)

P(rm-1=8SjLm-1=C1...Cpn-1)

P(rma1=SjLin-1=Cj...Cn-1,Rm-1=Cm)

Figure 3. Gradual refinement of conditional feasibilities along with state transitions. The state transitions graph in the middle shows all

possible transitions allowed by the FSM on the input characters.

Lookback exploits the property that the conditional state fea-
sibilities, to a certain degree, are dictated by the state transitions
specified by the FSM. It can quantitatively update each state’s fea-
sibility, and even prune impossible states, i.e. the states with feasi-
bility equal zero, for speculation.

2.2 Formulation of Performance Expectation

In the performance formulation, we assume that 71" threads try to
process an evenly divided input string based on a given FSM.
We use expected makespan' as the performance metric, defined as
follows:

Definition 2. Given an FSM application, the makespan of a
thread’s speculative execution is the time elapsed from its start
to its finish; the makespan of the FSM application’s speculative
execution is the time elapsed from the starting of the first started
thread to the end of the last finished thread. The expected makespan
is the statistical mean of the makespans of all executions of the ap-
plication on inputs of a given length. It is denoted as E M.

The makespan of a thread in a lookback-based speculative exe-
cution is the sum of three components: its lookback overhead w(L),
the time for processing its own workload, and the reprocessing time
if the speculation fails, as shown in Figure 4. We discuss the calcu-
lation of each as follows.

makespan if spt s

A A
Y

vy

makespan if sp=sr

w(L) | (1+b)>CXN/T
@ speculation point

Figure 4. The makespans of a thread, in cases of correct specula-
tion (sp = sr) and wrong speculation (sp # sr), where, sp and sr
are the speculation and real states respectively.

1) Lookback Overhead The lookback overhead depends on the
lookback length. We denote the overhead with w(L). The basic
operations during a lookback are the transitions from one state to
another on the suffix and the probabilities propagation.

2) Workload Processing Time The workload processing time
includes the time needed by a state transition, and often some
additional operations to consume the current results of the FSM
execution. Given an input segement with length IV, The processing
time can be expressed as (1 +) - Cy - N/T, where C. is the time
consumed by one state transition, and /3 is the cost for additional
operations.

! Makespan is a standard term in scheduling, referring to finish time.

3) Reexecution Time To compute the reexecution time, one must
consider state convergence. Even though the speculation state sp
may differ from the real state sr, state transitions starting from
them tend to converge gradually. For example, when the FSM in
Figure 1 sees string “001000”, no matter it starts with state 4 or state
5, after processing the first three characters “001”, it always reaches
state 6. We call the number of state transitions needed before two
states converge the merging length of the two states.

Apparently the merging length depends on input strings and
the real state sr. To compute the expected makespan, we use the
expectation of the merging length across all inputs and all possible
true states, denoted as Lz (sp).

Suppose after an [-long lookback, the feasible states set (i.e., the
set of states whose feasibilities are positive) is .S; and feasibilities
are { P'(s)|s € S;}. The expected merging length between state sp
and real state sr is:

Li(sp) = > Lar(sp,si) - P'(si), ¢))
s,€S)]
where, Las(sp,s;) is the statistical expectation of the merging
length of sp and s; on all possible inputs.

As the actual reexecution length cannot be larger than the length
of the input segment (N/T), min{ L}, (sp), N/T} is the expected
reexecution length for a given speculation sp. Because a reexecu-
tion needs to reprocess the workload besides conducting state tran-
sitions, the expected reexecution time for a thread is

x(l;5p) = min{ Ly (sp), N/T}- (1+6) - Cr. (2)

Putting All Together The sum of the three components gives the
makespan of a thread. For the makespan of the entire execution,
note that the reexecutions have to happen in serial due to the state
dependence happened at each speculation point.

Without loss of generality, assume that all threads start at the
same time. Let S be a vector containing the speculated states of all
threads in one execution. The expected makespan is as follows:

EM(S) =w(l)+ (1+8)-Ce- N/T+ > x(,sp(i)) (3

=2

where sp(i) is the speculated state of thread 4, that is, the i*"
element in S.

This formulation of performance expectation plays a fundamen-
tal role by formalizing the goal of an optimal design of speculation
schemes. With it, some intuitive designs manifest their problems
immediately. For instance, at a speculation point, choosing the state
that is most likely to be the true state (i.e., with the largest P'(.))
may not be the best strategy.

2012/4/15

3. Towards Optimal Designs

In this section, we first discuss the major dimensions in designing a
speculation scheme for FSM computations. Then, we demonstrate
the use of the formulations provided in earlier sections to optimally
configure two speculation schemes.

3.1 Design Dimensions

There are three main dimensions in configuring a lookback-based
speculation scheme for FSM computations. The first is lookback
length. The effects of a long lookback are mixed: By exploiting a
long suffix, it tends to reduce misspeculations and hence reexecu-
tion time, but meanwhile, it increases lookback overhead.

The second dimension is the set of states for starting a lookback.
All previous speculation schemes use the default initial state of
the FSM as the starting state for lookback, which restraints the
lookback benefit. As we will show, a larger starting state set tends
to yield a better speculation result, by paying off higher overhead.

The third dimension of design is the selection of lookback
results for speculation. When the starting state set of a lookback
includes more than one state, the FSM executions from each of
them will reach a state by the end of the lookback. For example,
if we use states 0 and 3 as the starting states for lookback for the
FSM in Figure 1, on a suffix “010”, the two lookbacks will end up
at states 1 and 5 respectively. Choosing the best lookback ending
state for speculation is the core question in this dimension.

These three dimensions interrelate with one another. Designs in
all these dimensions together determine the quality of a specula-
tion scheme. In this section, we concentrate on two configurations
of the second dimension. One uses the complete state set .S as the
lookback starting state set, the other uses a single state (adaptively
determined) as the lookback starting state set. Our analysis will
demonstrate how the formalization described in the previous sec-
tions makes it possible to configure the two speculation schemes
optimally.

Using a subset of S as lookback starting state set leaves some
state transitions unexamined during the lookback, Some approxi-
mations may have to be used as remedy when computing condi-
tional state feasibilities. Details are out of the scope of this paper.

3.2 Speculation through All-State Lookback

In this scheme, the lookback uses the complete state set as the
starting state set. The key design questions are the determination
of the optimal lookback lengths and the selection of the optimal
lookback ending states for speculation.

Selecting the Speculation State In this all-state lookback scheme,
after a lookback, there are typically multiple ending states. Which
is selected for speculation determines the expected reexecution
time. Our selection algorithm is as follows: After the lookback,
each state s would get a latest state feasibility, the expected merg-
ing length can be computed by Equation 1, that is the expected
rexecution length when s is selected for speculation. The opitmal
speculation state is the one with minimal L’ (s), noted as s*.

Finding Optimal Lookback Length The selection of the opti-
mal lookback length is based on the expectation of makespan (i.e.,
Equation 3.) The first two components of the makespan are easy to
compute. The third component is the sum of all threads’ reexecu-
tion overhead, which is unavailable before the execution finishes.
To approximate it, we use a number of suffixes to do [-long look-
backs and get the average rexecution overhead. Then, the curve fit-
ting is applied to the first and third components. The optimal look-
back length can be obtained by solving Equation 3.

3.3 Speculation through Single-State Lookback

In the prior schemes [14, 19], only the default initial state is used
as the starting state for lookback. In this sub-section, we show that
when the probabilistic analysis applies to single-state lookback, it
can easily enhance the quality of such schemes.

We start with its makespan. If we use [, and [, to represent the
lookback length and expected reexecution length respectively, we
can rewrite the makespan equation, Equation 3, to

EM(ly) = lp-(14+X)-Cs+(1+5)-Ce-N/T+(T—1)-lo-(148)-Cs.

“)

Let s, represent the starting state of a lookback. The makespan
equation can be simplified with the following lemma:

Lemma 1. For single-state speculative executions, if
L8 (sh) > Iy, then 1, = LY, (s) — Iy, otherwise, 1, = 0.

Putting [, values from Lemma 1 into Equation 4, the makespan
equation is simplified, from which, we get the following theorem:

Theorem 1. For single-state speculative execution (T > 2 and
B > M), the optimal lookback length equals LS;(s}), and the
expected makespan equals LY, (s%)-(14+X)-Cy+N/T-(148)-Cs,
where s}y is the lookback starting state.

We prove the lemma and theorem in our technical report [25].

All parameters in the theorem, including L3, (s) (s € S), can be
obtained through profiling (Section 4.) Based on this theorem, one
can easily compute the minimum expected makespan min_em(s)
for each s. The optimal state to use for lookback is just the one
whose min_em(s) is the smallest; its corresponding optimal look-
back length is the overall optimal lookback length. This gives the
configuration that minimizes the expectation of makespan.

4. Implementation and Library Development

The implementations of the two speculation schemes both con-
sist of a profiler and a controller. The controller runs online. By
feeding information collected by the profilers to the analytic mod-
els described in the previous section, it configures the speculation
schemes (e.g., lookback length, starting states, selection of specula-
tion states) on the fly to suite the properties of the FSM and inputs.

The profiler can run either online or offline. The online profiler
has an adaptive switch. If the overhead is larger than 10% of the
single-thread workload processing time, it stops and falls back to
the default simple heuristic-based parallelization.

OptSpec Library To make the model-based speculative schemes
easy to use, we develop a library named OptSpec which integrates
the all-state and single-state speculative schemes and the online and
offline profiling procedures together. It is implemented in C and
POSIX Threads. Its most important API are

OptSpec_offlineProf (string* input, FILE* profFile, FSM*
fsm, void* action, void* args, int scheme);
OptSpec_specPar (string* input, FILE* profFile, FSM*
fsm, void* workload, void* args, int scheme).

Figure 5 shows how the library can be used for parallelizing a
regular expression matching application. As demonstrated, to use
OptSpec for parallelization, users do not need parallel program-
ming or debugging. Details are in our technical report [25].

5. Evaluation

We evaluate the proposed techniques on seven FSM applications
listed in Table 1. These programs come from the web XML pro-
cessing community (e.g., lexing and xval [24]), mathematics (e.g.,

2012/4/15

Table 1. Benchmarks

Name | Description |S] Ly (s,r) PY(s) L* Training Input | Testing Input
huff Huffman Decoding 46 4~25 0~0.21 23 1.60MB 209MB
lexing | XML Lexing 3 1.0~6.8 0.06~0.5 2 1.60MB 76MB
xval XML Validation 742) 0~0.054 229 1.70MB 57TMB
strl String Pattern Search 1 | 21 1.9~4298 0.016~0.066 | 1279 1.60MB 96MB
str2 String Pattern Search2 | 41 | 1000~40000 | 0.008~0.033 | 32767 1.64MB 96MB
pval Pattern Validation 28 0~o00 0~0.50 0 1.7MB 96MB
div Unary Divisibility 7 00 0.143~0.144 0 1.7MB 97MB

\D heuris Bheuris' 0 model-S_on Mmodel-A_on O model-S_off m modeI-A_off\ small 777 medium KRR large m—
8 8

7 71 8
6 61 7 b g
o5 a5 3 3
2 2 6 K
, £ 5
g4 g4 a % £l
it 5
& & > 54 K
3 34 ° % pX
g .. 4
2 21 3 ;:.: 5
%] £ 5
1 L 3y £
£ £
0 0 2+ % i
huff lexing xval strl str2 pval div huff lexing xval strl str2 pval div ::oj ;Ej
Benchmarks Benchmarks 1+ K £

0 X X 4

(a) p=10

(b) =50

huff lexing xval str1 str2 pval div
(c) model-A _off on different input sizes

Figure 6. The overall speedup when 8 threads are used. heuris: Previous scheme [19]. heuris’: Previous scheme [19] with simple extensions.
model-S_on: Our single-state scheme with online profiling. model-A_on: Our all-state scheme with online profiling. model-S_off: Our
single-state scheme with offline profiling. model-A _off: Our all-state scheme with offline profiling.

void * recPos (char * buff)...} // user defined action function

OptSpec_setThdNum (8);// thread number
read (regex);

OptSpec_regex2fsm (regex, fsm);// build FSM
read (input);

/I speculative execution. Replace it with OptSpec_offlineProf for offline profiling.

OptSpec_specPar (input, f, fsm, recPos, buffArr, OptSpec_ALL);
highlight (buffArr, ...);

Figure 5. Using OptSpec to parallelize a string matching program.

div [3]), classical Huffman decoding (huff [16]), and string pattern
matchings (strl, pval, and str2 [1].)

Our experiments run on a 8-core machine equipped with two
Intel Xeon E5620 processors. The machine runs Linux 2.6.22 and
has GCC 4.4.1 as the compiler (optimization “-03” is used for all.)

For each benchmark, we compare the results from different
speculative executions: The heuris shows the performance from
the state-of-the-art scheme described in recent work [19]. It has
lookback and other recent techniques incorporated, but relies on
simple heuristics and is not adaptive to FSM properties or input
strings. We implement the scheme with three lookback lengths, 32,
128, 512, that are used by the previous study [19] and use the best
performance for heuris. The heuris’ version is a simple extension
to the previous technique in that it uses the state with the largest
context-free probability P°(s) as the starting state for lookback.
Again, we try the three lookback lengths and report the best results
of this version. We include this version to see whether a simple
extension is sufficient to address the limitations of the previous
techniques. The other four versions are our methods with either
online or offline profiling.

Figures 6 (a) and (b) report the overall speedups compared with
the sequential performance when 8 threads are used with different
[values. Figure 6 (c) reports the influence of input size on the
performance of model-A_off with 5=10, where the sizes are in

gemometric progression with the common ratio 5. The “medium”
size is the input size listed in Table 1.

Overall, the model-based approaches outperform the previous
techniques significantly, regardless /3 values, and input sizes. The
online profiling incurs some noticeable overhead on st2 when £ is
small. For a large FSM, it shuts down automatically and is remedied
by our offline model-based scheme, as illustrated on xval. The
single-state model performs as well as the all-state methods in most
cases. An exception is xval, whose average state merging length is
infinity; speculation accuracy is hence critical. Thanks to the use of
all states for lookback, the all-state method is able to select the state
with the highest speculation accuracy (57% versus 0), producing
the largest speedup. The results of heuris’ show that the simple
extension to the previous techniques is insufficient.

6. Conclusion

This paper introduces formal analysis into speculative paralleliza-
tion by formulating FSM speculative executions and the connec-
tions between the design of speculation schemes and the charac-
teristics of FSM and their inputs. It deepens the understanding to
speculative execution of FSM computations with a series of the-
oretical findings, including the essence and effects of lookback
for speculation, the connections between state transitions and con-
ditional feasibilities, the relation between partial committing and
overall running times. It provides two model-based speculation
schemes, with suitable configurations automatically determined.
Experiments show that the new techniques outperform the state of
the art substantially. By integrating the techniques into a library,
this work makes the techniques easy to adopt. The findings may
apply to applications beyond FSM, prompting more studies in shift-
ing speculative parallelization to a rigorous paradigm. In [25], we
demostrates this potential through a case study, parallelizing com-
mand dialogue systems, and leave full generalization to the furture.

2012/4/15

References

[1] Regular expression repository. http://www.regular-expressions.info.

[2] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of transac-
tional memory and automatic mutual exclusion. In POPL, 2008.

[3] B. Alexeev. Minimal dfa for testing divisibility. Journal of Computer
and System Sciences, 69(2), 2004.

[4] J. Allen, D. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and
A. Stent. Towards conversational human-computer interaction. Al
Magazine, 2001.

[5] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams, and
K. Yelick. The landscape of parallel computing research: A view from
berkeley. Technical Report UCB/EECS-2006-18, University of Cali-
fornia at Berkele, 2006.

[6] H. Bunt and A. Nijholt. Advances in probabilistic and other parsing
technologies. Kluwer Academic Publishers, 2000. Chapter 12.

[7]1 B. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Minh,
C. Kozyrakis, and K. Olukotun. The atomos transactional program-
ming langauges. In PLDI, 2006.

[8] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In OOPSLA, 2005.

[9] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang.
Software behavior-oriented parallelization. In PLDI, 2007.

[10] M. Feng, R. Gupta, and Y. Hu. Spicec: Scalable parallelism via
implicit copying and explicit commit. In PPOPP, 2011.

[11] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. In PLDI, 1998.

[12] M. Herlihy and J. E. Moss. Transactional memory: Architectural
support for lock-free data structures. In HPCA, 1993.

[13] Y. Jiang and X. Shen. Adaptive software speculation for enhancing the
cost-efficiency of behavior-oriented parallelization. In /CPP, 2008.

[14] C. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodik. Paral-
lelizing the web browser. In HotPar, 2009.

[15] B. Kaplan. Speculative parsing path.
http://bugzilla.mozilla.org.

[16] S.Klein and Y. Wiseman. Parallel huffman decoding with applications
to jpeg files. Jounal of Computing, 46(5), 2003.

[17] D. Luchaup, R. Smith, C. Estan, and S. Jha. Multi-byte regular
expression matching with speculation. In RAID, 2009.

[18] C.J. Pickett, C. Verbrugge, and A. Kielstra. Adaptive software return
value prediction. Technical Report 1, McGill University, 2009.

[19] P. Prabhu, G. Ramalingam, and K. Vaswani. Safe programmable
speculative parallelism. In PLDI, 2010.

[20] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. 1. August.
Speculative parallelization using software multi-threaded transactions.
In ASPLOS, 2010.

[21] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede
approach to thread-level speculation. ACM Transactions on Computer
Systems, 23(3):253-300, 2005.

[22] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard
execution model for speculative parallelization on multicores. In
Micro, 2008.

[23] E. Witte, R. Chamberlain, and M. Franklin. Parallel simulated anneal-
ing using speculative computation. /EEE Transactions on Parallel and
Distributed Systems, 2(4):483-494, 1991.

[24] Y. Zhang, Y. Pan, and K. Chiu. Speculative p-dfas for parallel xml
parsing. In Proceedings of the International Conference on High
Performance Computing, 2009.

[25] Z. Zhao, B. Wu, and X. Shen. Probabilistic Models towards Optimal
Speculation of Finite State Machine Applications Technical Report
WM-CS-2011-03, The College of William and Mary, 2011.

2012/4/15

