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1. Introduction
In reactive systems, events are detected and responses (reac-
tions to the detected events) are activated. These events can
be given by a user, software, hardware or by a more complex
processing of lower-level events. Complex Event Processing
(CEP) [13, 18] is a paradigm that focuses on the detection,
processing, distribution and consumption of events.

Crosscutting concerns are ubiquitous in software sys-
tems. Examples of typical crosscutting concerns are logging,
persistence, security, transaction management and others.
Aspect-Oriented Programming (AOP) [17] provides a mod-
ular representation of crosscutting concerns where the devel-
oper indicates where should these concerns be applied and
what should be done. This way, scattering and tangling [24]
of concerns is avoided. Aspects are applied at several dif-
ferent locations of the underlying system. Identifying these
locations with event detectors is a very natural approach to
combine events and aspects.

My research deals with understanding the implications
of introducing language extensions to handle events and
developing practical tools and techniques for compositional
verification in this context.

Moreover, we consider some of the semantic choices in
combining events and aspects, their motivation and implica-
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tions. In particular, these choices affect the understanding of
the system. For instance, certain combinations of these se-
mantic choices lead to a possible atomic understanding of
events which makes reasoning about them much easier.

Furthermore, we provide a compositional verification
technique for modular verification of libraries of events and
aspects [12]. Using this technique, model checking is ap-
plied to much smaller models, and for the user who is un-
aware of what the aspect assumes about the underlying event
detectors, the necessary assumptions are obtained automati-
cally.

2. Background
In this section we provide the background and related work
on event and aspect verification in order to later expand on
our compositional specification and verification techniqueof
aspects that respond to complex events.

2.1 Aspect-Oriented Programming (AOP)

As mentioned above, in AOP, crosscutting concerns can be
represented modularly. Each aspect consists of a set of ad-
vice procedures, where each advice indicates where it must
be applied and what it must execute.Pointcutsare expres-
sions used to indicate where the aspect should be activated.
They usually have keywords to represent method calls, fields
set, exceptions thrown and others. Each pointcut captures a
set ofjoinpoints(locations where an aspect may be woven).
Each AOP language defines its own joinpoint model, that is,
the set of all the locations where an aspect may be activated.

A very popular AOP language is AspectJ [17] which ex-
tends Java to include aspects. In AspectJ, the joinpoint model
does not capture loops or assignments, but does capture
some other dynamic information such as the current con-
trol flow, the actual class of an argument, calls, exceptions,
exception handling and others. However, the fragile pointcut
problem [23] (an unexpected joinpoint could be added or re-
moved to those captured by the pointcut without noticing)
is a well-known issue in AspectJ, since pointcuts are very
attached to the syntactic names of methods and fields used.



2.2 Events

Combining events with AOP not only aids in reducing the
fragile pointcut problem but also provides a clearer way to
represent the locations where an aspect should be woven.
The combination of events and aspects has been considered
in several related work [1, 14, 20, 22]. However, each of
these extensions either has deficient decoupling properties,
or is restricted in its expressive power, its compositionality,
or its capability to represent crosscutting events in the con-
text of AOP.

The work in [4] considers a more natural integration of
CEP and AOP: event detectors look like aspect definitions
but they are only allowed to observe the underlying sys-
tem. Their side-effects are only those given by the possibly
activated responses. In addition, event detectors can gather
information and be hierarchically composed, thus building
more complex event detectors. Aspects can then respond to
complex event detectors. In the present work we consider
this event definition, however the ideas presented for compo-
sitional specification and verification of events and aspects
can be applied to different event languages as long as the
observer-detector essence of events is preserved.

2.3 Event Specification and Verification

The issue of event specification and verification was ad-
dressed as a first step of this work in [10]. In particular,
different specification languages such as LTL (linear tem-
poral logic) [21], automata, regular expressions and Kripke
structures were analyzed. LTL allows expressing properties
about the exposed information of events according to the
events that have occurred before. Other specification lan-
guages such as state machines allow expressing properties
by means of paths or words accepted, and are particularly
useful for defining exactly when the event must or must not
be detected.

Moreover, the main general properties that need to be
verified about events were presented. A complete guarantee
of an eventmustinclude:

When is the event detected?:More complex event detec-
tors and aspects that respond to these events rely on
the considered event being detected at the exactly right
places.

What information is exposed?:More complex event de-
tectors and aspects may also rely on the information
exposed by lower-level events, therefore the guarantee
should express the correctness of the exposed informa-
tion.

Example 1. The event detector in Fig. 1 represents when
there have been insufficient purchases of a product during
a certain period. In this definition, whenever there is a rel-
evant purchase (indicated by the lower-level event detector
RelevantPurchase), the counter inpurchaseInfo is in-
creased. Whenever there is a call totimeDone (a period of

consideration has ended) and there number of relevant pur-
chases of the current period is not enough, theLowActivity

event is triggered, exposing the product for which it is de-
tected.

event LowAct iv i ty ( P p roduc t )
i n t UPPERBOUND = 100;
I n f o p u r c h a s e I n f o =new I n f o ( ) ;
a f t e r ( Pu rc ha s e pu rc ha s e ) : R e le va n tPu rc ha s e ( pu rc ha s e ){

p u r c h a s e I n f o . i n c r e a s e ( pu rc ha s e . p roduc t ( ) ) ;
}
when( P p roduc t ) :c a l l ( P . t imeDone ( ) ) && t a r g e t ( p roduc t ){

i f ( p u r c h a s e I n f o . c oun t ( p roduc t )<= UPPERBOUND)
t r i g g e r ( p roduc t , p u r c h a s e I n f o . c oun t ( p roduc t ) ) ;

p u r c h a s e I n f o . r e s e t ( p roduc t ) ;
}

Figure 1. LowActivity event

Example 2. Continuing with the example of Fig. 1, the guar-
antee should express that the event is detected if and only if
a period without enough relevant purchases has ended, and
the product exposed is the one for which the event detected.

To apply verification we have presented a compositional
technique where each event should satisfy a specification
given by an assumption about the underlying system and a
guarantee about the augmented system. This model - con-
sisting of an assumption and a guarantee - is calledassume-
guarantee. More details are available in [10].

2.4 Aspect Specification and Verification

Aspect specification consists of an assumption about the un-
derlying system and a guarantee about the augmented sys-
tem expressed in Linear Temporal Logic (LTL). By apply-
ing anassume-guaranteeverification technique, each aspect
is verified on its own and on success the aspect can be ap-
plied to any system satisfying its assumption [15]. Modular
verification for aspects is applied as follows:

1. The tableau of the assumption is built. The tableau of an
LTL formula is a state machine including every possible
computation path satisfying that formula.

2. The aspect is woven. At every place where the aspect
should be woven a transition from the tableau to the
aspect is added, and at every place where the aspect
finishes its execution a transition is added from the aspect
to the tableau.

3. The augmented model is checked against the guarantee
using model checking.

Then, given a systemS satisfying the aspect assumption,
the augmented model includingS and the aspect will cer-
tainly satisfy the aspect guarantee.

Example 3. We can consider as an example theDiscount

aspect in Fig. 2. This aspect applies a discount to the prod-
uct for whichLowActivity has been detected. A possible
assumption ofDiscount would be thatLowActivity is de-
tected at the right places, and a possible guarantee would be



as pe c t Dis c oun t
a f t e r ( P roduc t p ) : LowAct iv i ty ( p )

a pp l yD is c oun t ( p ) ;

Figure 2. Discount aspect

that wheneverLowActivity is detected, in future purchases
including the product, the discount will be applied.

2.4.1 Interference

Systems usually include several aspects, and there may be
interference when a group of them is woven to the same sys-
tem. There is interference among a set of aspects if each as-
pect on its own is correct with respect to its specification, but
when the whole system is considered, at least one guarantee
is no longer satisfied. Interference under sequential-weaving
(only one aspect is woven at a time) was considered in [15].
However, in that model, if an aspectA is woven into a sys-
tem at the available joinpoints, and then another aspectB is
woven, the joinpoints ofA added byB are not recognized
(sinceB was addedonlyafterA has already been woven).

As part of this research, we have also considered the prob-
lem of interference and cooperation among aspects under
joint-weaving semantics [11], introducing the specification
and verification techniques in order to detect interferenceor
verify the correctness of a set of (possibly collaborative)as-
pects. However, in that work, aspects are assumed to respond
to LTL pointcuts but more complex events gathering infor-
mation are not considered.

2.5 Counterexample-Guided Abstraction Refinement

In model checking, the state-explosion problem is widely
known for making very large model verification unfeasible.
Counterexample-Guided Abstraction Refinement (CEGAR)
[8] is an iterative technique that addresses this problem by
starting verification on an abstract model and applying the
necessary refinements only when necessary.

The abstract model considered at each iteration represents
an overapproximation of the concrete model. Therefore, if a
property expressing what is expected of every path is sat-
isfied in the abstract model, in particular it is satisfied in
the concrete model. However, if the property is not satisfied
in the abstract model, the counterexample obtained is ana-
lyzed to determine whether the error is real (i.e. it belongsto
the concrete model) or spurious (belongs only to the abstract
model).

The procedure is applied until the error is found real, or
all the necessary refinements have been added to prove the
property satisfied.

CEGAR has be combined with various techniques. Some
examples are:

• The original work [8] uses BDDs [5] for spuriousness
checking and refining.

• BLAST [3] obtains a sequence of interpolants [19] and
applies lazy abstraction [16].

• SATABS [9] translates the program to a boolean program
and interacts with a SAT Solver for verification and re-
finement.

• MAGIC [6] represents concurrent components with la-
belled transition systems (LTS) and compositionally ver-
ifies and finds refinements (using weak bisimulation).

Although all the related work applies CEGAR ideas,
the use of a counterexample-guided abstraction refinement
scheme has not yet been considered for events and aspects.
In particular, the knowledge about the interaction between
events and aspects can be used to build a compositional tech-
nique (to be presented in the next sections).

3. Problem formulation and Approach
The combination of event and aspect verification raises new
questions such as how the aspect verification technique is
affected when aspects respond to events detected. Aspect
verification in MAVEN [15] considers pointcuts as temporal
logic formulas. Given that events are now more complex and
hierarchical entities, event specification should now be used
to identify the places where the aspects should be activated.

The method obtained should be sound and compositional,
in order to allow considering aspects responding to different
events, and reusing the proofs in different systems to which
the library is applied.

Considering event guarantees given by LTL formulas, a
naive approach where all the event guarantees are consid-
ered as part of the assumption of the aspect would yield a
very large model. Asking the user to provide a minimal set
of assumptions is not feasible since the user may not neces-
sarily know which information about the event detectors is
in fact necessary for proving a property.

3.1 CEGAR for Event and Aspect Verification

To address these problems, an abstraction-refinement scheme
for verifying events and aspects has been presented [12].
The main algorithm is presented in Fig. 3. In this scheme,
we start with the specification of the aspect and underlying
events. The aspect assumption about the underlying events
should be an overapproximation of the actual event detec-
tion. This initial assumption can be obtained, for instance,
with static code analysis. In the example of Fig. 1 a possible
initial assumption about the events could be that whenever
LowActivity is detected, for sure a call totimeDone must
have occurred.

Verification is applied as in MAVEN [15] (Section 2.4).
There are two possible outcomes: either verification suc-
ceeds or a counterexample is found. If verification succeeds
with the overapproximation considered, then in particular
for the actual event detection definition the aspect guarantee
holds, and therefore the aspect is proven correct. Otherwise,



Figure 3. Aspect verification

the counterexample is analyzed to check whether the error is
real (the counterexample found is consistent with all event
definitions and thus the error is in the aspect or its specifi-
cation) or whether the error is spurious (some information
about the event detectors is missing). This analysis can be
done automatically applying formal verification techniques
[12] and in case the error is found spurious an appropriate
refinement is added.

This abstraction-refinement technique in the context of
AOP with events has several advantages:

• The user does not need to know what the aspect assumes
about the event detectors for its guarantee to hold.

• Each aspect guarantee does not usually need all the infor-
mation about the underlying event detectors. Therefore,
model checking is applied to much smaller models.

• Checking spuriousness and finding the appropriate re-
finement is done modularly. Therefore, if the number of
event detectors increases, verification should still be fea-
sible.

• By the end of the procedure either a real counterexample
is found or the property is verified and the necessary
information about the events is obtained.

3.2 Interference

Another question that arises is how to apply compositional
interference detection now that aspects may be advised by
other aspects because of events detected during their exe-
cution. The work already done as part of this research on
interference detection [11] has been extended to incorporate
event detectors [12]. This implied analyzing interferenceand
cooperation that may arise from the combination of events
and aspects and considering the spectative nature of events.

3.3 Event semantics

Different event semantic choices regarding event evaluation
may affect the analysis of a library of events and aspects. For
example:

1. In which order should event detectors be evaluated? A
first analysis of two options was presented in [4]:

• One possibility is to first evaluate all the event de-
tectors, and then apply all the aspects for which their
event detector is matched. In this case, reasoning may
seem simpler (the changes applied by an aspect are ig-
nored if another aspect was already decided to be ac-
tivated because of the current set of events detected).
However, this scheme is not consistent with the As-
pectJ’s behavior (in AspectJ, an aspect is activated if
and only if at the moment to be activated the dynamic
conditions hold as well).

• Another possibility is to consider at each joinpoint
which are the possible aspects that may be activated,
and for each of these aspects evaluate the necessary
event detectors. In this case the semantics are closer
to those of AspectJ and to what AOP developers are
used to. However, when applying formal methods the
possible changes made by other aspects should be
considered.

2. Are events allowed to be detected within events? For ex-
ample, could an eventB be evaluated because of some
statement within another eventA? If so, what would hap-
pen with the aspects that are activated because ofB? Re-
stricting events not to be evaluated within the evaluation
of other events allows a clearer understanding of the sys-
tem, and maintains events’ spectative essence. This re-
striction does not affect the expressive power of events
greatly, it only implies that the developer should reify and
modularize events in order to preserve their modularity
and simplicity.

3. How does the underlying joinpoint model affect the eval-
uation locations? The set of locations where an event is
potentially detected is tightly coupled to the underlying
joinpoint model.

For the work in [12] we have not restricted the event
model besides the natural assumptions of event evaluation
being atomic (or reducible to atomic) and free of side-
effects. Therefore, different semantic choices can be con-
sidered under which these assumptions are maintained.

4. Uniqueness and contributions
The approach to answer these questions involved combining
very different formal verification techniques. Static analysis
can be used for checking that an event does not affect the un-
derlying system and in [12] was considered to obtain an ini-
tial assumption about the underlying events. Model checking
is used to verify that an augmented model satisfies a prop-



erty and to analyze whether a counterexample is spurious.
SAT solvers are used to find appropriate refinements. Taking
advantage of different techniques’ strengths aids in build-
ing a simple and natural technique for verifying a library of
events and aspects.

Although there is several related work on CEGAR, our
work is the first one considering CEGAR in the context of
events and aspects. In particular, since events are assumed
to be spectative, the technique presented is compositional,
smaller models are checked and spuriousness checking and
refinement is done by considering each event individually,
thus improving scalability of AOP verification.

The technique presented also takes advantage of event
and aspect modularity, and applies the necessary checks
modularly. This is sound since the abstractions considered
represent an overapproximation of the actual event detectors
and therefore when an LTL property is checked for every
path of the abstract model, in particular it is checked for
every path of the concrete model.

In particular, CEGAR for events and aspects has been
extended to [12] :

• detect interference in a library of events and aspects
where aspects may respond to complex events,

• analyze certain cases of reachability (whether there exists
some path where the eventmaybe activated, and

• complete partial event specifications (user-interaction is
required).

Verifying a library modularly prevents dependence on a
completely built system in order to apply an early detection
of bugs and interference. It also allows reusing the library
in any other system that satisfies the necessary assumptions
without applying any further checks.

The uniqueness of this research is mainly given by build-
ing a compositional verification technique that combines
events and aspects, detects interference and is not restricted
to sequential weaving semantics, but also accepts aspects
that may add and remove events of other aspects as in the
joint-weaving model.

The technique presented is also flexible to consider differ-
ent semantic choices regarding event evaluation. The main
assumptions are that event evaluation is considered atomic
(or can be reduced to be thought as atomic) and does not
affect the underlying system.

A partial implementation of the technique has been done
extending MAVEN [15] to include spuriousness checking,
finding appropriate refinements and applying verification it-
eratively by interacting with the model checker NuSMV [7]
and an SMT Solver [2].

In future work, we intend to consider more complex case
studies to analyze performance and scalability of the ap-
proach. Moreover, the user-interaction queries should be re-
fined to find appropriate questions that help the user cor-

rect and complete specifications, thus providing a more user-
friendly specification and verification tool.
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