
Industry-Inspired Guidelines to Improve

Students’ Pair Programming Communication
Mark Zarb

School of Computing
University of Dundee

Dundee, Scotland
markzarb@computing.dundee.ac.uk

Submitted to the ACM Student Research Competition Grand Finals 2013

ABSTRACT

Novice pair programmers find communication within their pairs

to be one of the greatest difficulties they face when starting to pair

program. However, developers cannot pair program without a

certain amount of communication. This research describes the

development of an analytic coding scheme derived from

observation of the communication of expert pairs working in

industry. Communication patterns identified from these expert

pairs are being used by lecturers to help novices learn to be more

effective in their pair communication.

1. INTRODUCTION TO PAIR

PROGRAMMING
Pair programming is a method which describes two programmers

working together on the same computer, sharing one keyboard.

Typically, each member of the pair takes a different role,

swapping roles frequently: the driver creates the code whilst the

navigator reviews it [1]. Pair programming requires its pairs to

communicate frequently, which leads the pair to experience

certain benefits over “solo” programming, such as a greater

enjoyment, and an increased knowledge distribution [2].

It is one of the key aspects of Extreme Programming, which

“favours both informal and immediate communication over the

detailed and specific work products required by any number of

traditional design methods” [3].

In their paper describing pair programming in an education

environment, Srikanth et al. [4] report several advantages to this

methodology over more traditional programming methods:

 Students working in pairs reported a higher satisfaction,

a quicker problem solving rate, and had improved team

communication and effectiveness, when compared to

“solo” programmers [3];

 Pair programming students were shown to be more

likely to experience more confidence in their submitted

work in comparison to “solo” programmers. Their levels

of comprehension of new topics and learning were also

significantly improved [5, 6].

The research investigated here illustrates how novices find

communication to be a barrier when pair programming, and

investigates communication trends and patterns for expert pairs.

These patterns are cast in the form of guidelines and examples,

which are used to assist novice pair programmers in learning to

communicate more effectively when working together.

2. BACKGROUND AND RELATED WORK
When working in a pair, programmers are expected to collaborate

verbally and non-verbally. This can cause social discomfort for

both the driver and the navigator, leading to reduced

communication effectiveness and lower productivity [7]. Many

programmers approach their first pair experience with a sense of

scepticism, having doubts about three areas: (i) their partner’s

working habits and programming style; (ii) reaching agreement on

the implementation process; (iii) the added communication

demands that this style of programming requires [3]. In a pilot

experiment, roughly 50% of first-time novice pair programmers

noted that the various forms of communication difficulties within

the pair contributed to “communication” being the main problem

with the pair programming process [6]. Furthermore, Stapel et al.

[8] hypothesise that there could be a difference in the rate of

communication between novice pair programmers and

professional ones, in that the novices might be communicating

less frequently with their pair partner. Communication is

frequently cited as a “vital aspect” of pair programming [9-11]. It

is seen that the pair’s communication could determine the success

of a pair programming experience; ultimately, if the pair does not

communicate, then the programmers are effectively only watching

each other code [11]. Communication hence is seen as being not

only an integral contributor to the success of pair programming

[7], but also as one of the main causes of failure [6].

Despite a fair amount of research into pair programming, it is not

fully clear what the communication within the pair contributes, or

how this is linked to success. If this can be understood, it would

lead to improved practices for teaching pair programming to

novices, and could help identify obstacles to successful pairing in

industrial settings.

3. APPROACH

3.1 Analysing Expert Communication:

pairwith.us
A series of videos depicting two expert software engineers pairing

together was produced independently of this study. The series

was made publicly available through vimeo.com, a video-sharing

service, with the aim of introducing pair programming to a wider

audience. Both members of the pair are agile coaches and avid

programmers who have over ten years of industry experience

across multiple sectors. At the time of filming, the unscripted

videos were broadcast online, and then archived [12] without any

post-processing or editing. The files incorporate live code

updates, a video of the pair, and an audio feed. The three tracks

(code, video and audio) are, for the most part, synchronized. The

project, pairwith.us, consisted of sixty videos, all authored by the

same pair, progressively working on the same code.

The pairwith.us team was contacted prior to the study reported

here, and gave consent for analysis of these videos for initial

research into communication and pair programming. These videos

allowed study of the pair’s speech, gestures, and actions [13] by

using qualitative methods.

3.2 Data Analysis
An approach informed by Grounded Theory was chosen, as this

method is frequently used as a framework for the analysis of

qualitative data [14]. It encourages continual refinement of the

generated theory through frequent comparisons between the

collected data and its analysis.

Traditionally, defining components of grounded theory include

the following stages for the researcher [15]:

 Simultaneous involvement in data collection and

analysis through open coding methods;

 Construction of analytic codes from data, not from a

priori hypotheses;

 Continual comparisons of the data with the codes during

each stage of the analysis;

 Iteratively developing and refining a theory during each

step of data collection and analysis.

3.2.1 Open Coding
Initially, several videos were eliminated from further study. These

included videos that had poor audio quality, lack of video feed, or

bad synchronization, which would have caused problems during

analysis. Thirty-one videos that had been recorded over a three-

month period were ultimately chosen for further analysis, with

each video lasting for approximately 30 minutes.

Analysis was made directly from the recordings at this stage rather

than via full transcriptions (creating full transcripts is known to be

a very time-consuming process that is subject to human error [16,

17]).

Large sections of the video were watched in a continuous,

immersive fashion, with pauses only to note keywords and

interesting information. Once all videos were watched, a

document was created that enumerated and identified the various

themes and types of communication exhibited by the two

programmers during the course of the recorded project. Various

instances of communication and behaviour were observed [18].

3.2.2 Creation and Refinement of Analytic Codes
Following Grounded Theory, the pair’s communication topics

were continually compared to each other and the originating data

in an attempt to condense them into a preliminary set of

keywords. These analytic codes represented the pair’s various

states of communication.

In order to evaluate the validity of the chosen analytic codes, as

well as further refine them, a sample of five videos was randomly

chosen from the selected set of thirty-one. These videos were fully

transcribed, and coded (segmented), using the analytic codes.

This allowed identification of analytic codes that were too vague,

or that were not able to completely categorise certain parts of the

transcript. For example, the code for ‘Silence’ was eventually

divided into two: ‘quiet’ silence and pair muttering (e.g. whilst the

driver is typing out code). The analytic codes were regularly

reviewed and refined with each viewing of the selected videos and

transcripts, until the list of preliminary analytic codes could

completely categorise all the transcripts.

Colleagues (n=3) from within the School of Computing at the

University of Dundee were recruited in order to perform an

assessment of the codes’ inter-rater reliability. All colleagues were

recruited from different research groups, with no ties to the study.

The raters were provided with a list of nine analytic codes and

asked to apply them to various sections of video and transcripts.

Inter-rater reliability tests resulted in Kappa = 0.71 (p < 0.001),

indicating a high agreement with the initial codes for the same

video segments. The raters also gave feedback that highlighted the

fact that some of the analytic codes were not based on

communication, but rather on the pair’s behavior (considered a

non-verbal interaction). These analytic codes (such as ‘Switching

Roles’) were then removed from the coding scheme as the

researcher was specifically interested in verbal interaction. The

coding scheme was therefore focused entirely on the pair’s verbal

communication.

The communication coding scheme thus created consists of the

following analytic codes, ordered by frequency of occurrence

within the pairwith.us videos, as depicted in Table 1:

 Suggesting, where a member of the pair starts planning

what the next step should be (e.g. “Why don’t you try

doing it this way?”).

 Thinking, normally showing the pair not speaking, both

focused towards trying to solve a current issue with the

code/design.

 Unfocusing, where the pair discusses something

completely unrelated to their current work (e.g. a movie

they saw the previous night or lunch plans).

 Explaining, where a member of the pair clarifies a bit of

the logic, or the code, to their partner.

 Reviewing, where the pair returns to a previous piece of

code and attempt to recall how it worked (e.g. “Right,

we have this method here – it was used to create the

relevant objects which will allow us to eventually

modify…”).

 Logic Discussion/Coding, showing the pair working

together, discussing objects/methods not directly tied to

the code being written (“I read a similar way of

implementing a method like this on a blog discussing

the merits of …”).

 Muttering, when the pair is not speaking using normal

conversational forms, but rather is typing at the

keyboard or jotting things down on a notepad, muttering

out as the work is progressing (e.g. “public” … “set” …

“arguments”).

These codes were sent back to the pairwith.us team, who offered

feedback and insight into some of the codes. The pair indicated

that ‘Muttering’, for example, was an important state to them, as it

allowed the navigator to understand that the driver was following

a line of thought whilst working, and was not simply stuck. This

meant that the navigator would not try to intervene during a

muttering stage, allowing the driver to complete his thought

process.

Table 1. Analytic Code frequency in the videos obtained from

pairwith.us

Analytic Code Frequency

Suggestion 28.4%

Thinking 19.0%

Unfocusing 13.3%

Explaining 11.4%

Reviewing 10.4%

Coding 9.1%

Muttering 8.4%

3.3 Analysing Expert Communication:

Including Other Professional Pairs
Following the creation of the analytic codes, it was important to

verify whether the coding scheme created would be valid for use

across a range of expert pairs, as the eventual aim is to create a

framework elucidating communication dynamics within pair

programming in general.

Several companies that practised pair programming were

contacted via relevant mailing lists and asked to volunteer to share

their pair programming experiences. Two companies gave consent

for observation and recording of individual pair sessions in their

industry setting.

Various pairs were observed for set periods of time throughout the

day within both companies. Both companies specialized in

software development – one for networking, and the other for

marketing and digital media. The environment was made as

natural as possible when videos were recorded for subsequent

analysis: the camera was placed outside the developers’ line of

sight and the researcher was not present during the recording

period. All pair members (n=22) gave informed consent, and also

completed a survey detailing their experience and history of pair

programming. When asked to rate their personal feelings about

the benefits of pair programming over solo programming, the

mean response was 4.1 (±0.7), on a scale ranging from 1 (“no

benefit”) to 5 (“very beneficial”).

The captured videos were fully transcribed and coded. The

frequency of occurrence of each analytic code was extracted, as

given in Table 2, and compared with the frequency in the

pairwith.us videos (Table 1) as discussed below.

There are differences noted between the code frequency within the

two sets of videos. Most notably, compared with the pairwith.us

videos, there is more use of Reviews and Explanations and less

use of Thinking (long, silent periods) in the larger set of 11

videos. It is possible that this results from the fact that the sets of

videos were captured in quite different settings – the pairwith.us

videos were recorded with an eye towards their instructional value

whereas the industry videos were recorded in a fast-paced work

setting. The former were therefore quite contemplative and the

latter had less ‘quiet’ time and more focus on deadlines.

Table 2. Analytic Code frequency in the videos obtained from
professional pairs in industry

Analytic Code Frequency

Suggestion 24.8%

Review 23.5%

Explanation 21.5%

Muttering 10.1%

Coding 8.4%

Unfocusing 7.7%

Thinking 4.0%

Importantly, the analytic codes derived from pairwith.us were

successfully used to fully code the transcripts produced from the

pairs in industry, showing that they were generalizable beyond the

pairwith.us setting.

3.4 Creation of Guidelines
Identifying and validating a set of communication states for expert

pair programming is the first step towards understanding how

expert pairs communicate. By reviewing the co-occurrence

relationships between analytic codes, frequently occurring

patterns of communication throughout the various industry videos

were determined. Transitions between communication states for

all pairs were examined, in accordance with grounded theory

methodologies. This process led to a better understanding of the

communication exhibited within expert pairs. Thereafter, a set of

concise instructions were constructed that could be delivered to

novice pairs to improve their understanding of successful pair

communication.

To understand the most commonly occurring patterns, the codes

were analysed to determine which preceded and followed each

other by extracting the relevant data from Transana1, the software

tool used to code the videos. The most common analytic code

transitions identified were verified against the pair videos. Figures

1-3 demonstrate the three patterns that were found most likely to

occur. In this section, each pattern is explained and guidelines

arising from this pattern are presented.

3.4.1 Restarting Pattern
At several points, the pairs were observed to completely change

the topic of discussion from their work to a more casual topic (e.g.

their Father’s Day plans, or a review of a recently released film).

An informal interview with some of the pairs showed that this

action was a conscious one: whenever they were stuck for a period

of time, the pair made an effort to break their focus or to stop their

current actions to discuss something completely unrelated.

Figure 1 depicts this pattern with the most common next actions.

The data shows that unfocusing is most commonly followed by a

reviewing action (e.g. “Let’s get back to this – what were we

doing?”), a suggestion (e.g. “Why don’t we try to do it this

way?”), or complete silence, whilst the pair pondered their next

move.

1 http://www.transana.org/

Figure 1. Restarting Pattern.

Guidelines suggested by this pattern are:

 If you and your partner are stuck in a thinking/silent

period and cannot seem to progress, actively break your

focus by discussing something completely off-topic and

unrelated to the issues at hand. This will allow you to

tackle the problem with a fresh outlook.

 Following this stage, attempt to:

o Look back on your last couple of steps and

review your previous work.

o Identify a fresh start.

o Try to suggest next steps related to your end-

goal in order to make progress.

 If your partner is attempting to break focus, don't

dismiss this. Breaking one's focus using jokes, private

conversations, etc. can lead to a fresh perspective,

which you and your partner may need.

3.4.2 Planning Pattern
Following a suggestion, the pair was most likely to review the

existing code to understand how refining it might help them

achieve their overall goal. As part of this conversation, one of the

pair would normally explain the underlying structure.

A suggestion could also separately lead to an explanation – for

example, whilst discussing a method, rather than reviewing the

structure, the pair would explain implications that the method

would have with respect to their goal (Figure 2).

 This pattern occurred most often at the start of the pairing

session: sessions observed typically started with the pair

reviewing legacy code and then attempting to devise ways to

reduce error messages or solve problems.

Figure 2. Planning Pattern.

Guidelines arising from this pattern are:

 Suggestions and reviews are useful states that will allow

you to drive your work forward. When in these states,

feel free to communicate about a range of things (e.g.

review previous code, suggest an improvement, review

methods to be changed, suggest potential impact).

 At any stage, do not hesitate to ask your partner for

clarification about any suggestions they make or actions

they are carrying out that you might not understand.

 Think about what your partner is saying and doing.

Offering an interpretation of the current state can help

move the work forward.

3.4.3 Action Pattern
The action pattern occurred mostly whilst a pair was trying to

create code. These instances would typically start with a member

of the pair making a suggestion as to what should be coded, or

how a certain error should be tackled. The pair would then either

talk about the code, or, alternatively, the driver would start typing

and muttering. The muttering frequently led to the navigator

making suggestions based on what the driver was saying, which

acted as a prompt for discussions (Figure 3).

Guidelines arising from this pattern:

 NAVIGATOR: Whilst the driver is coding, actively

look to make suggestions that contribute to the code.

 NAVIGATOR: If the driver is muttering, use this

opportunity to make sure your suggestions have been

properly understood.

 DRIVER: Whilst you are programming, or thinking

about your code, voice your thoughts (even if it is just

mumbling and muttering while you're typing). This

helps the navigator know that you are actively working,

have a clearer sense of how you are approaching the

task, and will allow for them to make useful suggestions

based on your current actions.

Figure 3. Action Pattern.

3.5 Involving Novice Students
The guidelines were introduced to a set of students, to investigate

the experiences resulting from their application.

3.5.1 Observations
One of the modules within the School of Computing at the

University of Dundee is “Agile Software Engineering”, in which

students learn various agile methods and are asked to adopt an

agile approach for their assignments over the course of a semester.

In 2012 the class was randomly split into seven teams of 3-5

people. Whilst working on assignments for this module, teams

were asked to practise pair programming rather than program

“solo”. Whilst coding, each team would decide which pairs of

students would tackle certain tasks. The class gave informed

consent for their pairing sessions to be observed for the duration

of the semester.

During a pre-test period of four weeks, students were observed

using pair programming techniques on a weekly basis during their

normal lab time. Following the end of the pre-test, each team was

invited to a semi-structured interview to give their thoughts on

pair programming thus far.

The class was then randomly split into Group A and Group B, for

the delivery of the guidelines, with the latter acting as a control

group. This split was presented to the class as an opportunity to

practise either “advanced pair programming” or “advanced

scrumming and team management”. Group A (consisting of 16

students) was introduced to the guidelines above and asked to

adhere to them during future pair programming sessions.

Introduction was carried out by explaining each pair programming

guideline individually, supported by examples from the

pairwith.us footage. Group B (consisting of 12 students) was

given control guidelines related to team meetings and scrumming,

created by the class lecturer. All introductory sessions (pair

programming and control) had approximately the same format and

duration.

Following another four-week period of observation, each group

was asked to attend a final semi-structured interview to once again

give their thoughts on pair programming. Each team within Group

A was asked about their use of the guidelines, whereas Group B

was exposed to the pair programming guidelines, which prompted

discussions. Both groups reacted positively to the guidelines,

stating that they seemed natural. It was noted that the Group B

students related the guidelines to their own experiences of pair

programming and stated that they felt the guidelines should be

introduced earlier during the module to aid their pair experience.

Perceptions of the value of the guidelines are evidenced by the

following quotes:

“I found that the restarting pattern came in useful when I was

thinking about other modules as well.”

“The action pattern, noticing the driver was muttering… that was

useful.”

“We definitely use the restarting pattern […] – we went to the

shop, getting away from the computer was helpful.”

“I can see the benefit – it gives a structured way to keep things

going”.

“It may have been a useful thing to know at the start.”

“There’s a definite benefit in introducing this – it’s deeper than

being taught formal steps.”

4. FINAL RESULTS
A final study was carried out to determine the effect that the

guidelines had on student communication. Undergraduate

students from within the department were recruited, and randomly

sorted into pairs. For the purpose of this study, each pair consisted

of two students at the same level of. Seven pairs were randomly

chosen to be ‘exposed’ to the guidelines, which were

supplemented with video clips from the pairwith.us project. The

unexposed pairs (n=6) would act as a control group.

Each pair was invited to attend a task-based study at various times

over a period of two weeks, adapted from the study reported in a

paper by Murphy et al [19]. The study was structured as follows:

the pair would enter the task room, and be presented with 19 files

of compiled code, with logical errors. If the pair was selected to

be part of the experimental group, they would watch the

guidelines video and be presented with a list of guidelines prior to

starting the task. As per the original study, students were asked to

work their way through the list of buggy programs, and solve as

many logical errors as possible within the 45-minute limit.

Following the study, students were individually asked to fill in a

survey where they rated several statements on a Likert scale

ranging from 1 (disagree) to 5 (agree), expanding on their

thoughts about pair programming, and the communication they

experienced with their partner during that particular pairing

session. The analysis of these results is reported below.

Independent-samples t-tests were used to (separately) compare

ease of communication and perceived partner contribution for

novices who were exposed to the guidelines, and those who were

not.

There was a significant difference in the scores reported for “ease

of communication” for exposed (M=4.57, SD=0.514) and

unexposed (M=3.92, SD=0.900) novices; t(24) = 2.32, p = 0.029.

There was also a significant difference in the scores reported for

“partner communication” for exposed (M=4.79, SD=0.426) and

unexposed (M=4.17, SD=0.835) novices; t(24) = 2.44, p = 0.023.

These results statistically show that when exposed to the

guidelines, individuals experienced an improved communication

with their partners within their pair. This indicates that the

patterns and guidelines presented in this paper can aid novice

pairs to communicate better.

5. CONTRIBUTIONS
Experienced, confident pairs communicate in a small number of

ways, and transitions between these identifiable states are evident.

During this study, we have identified a set of analytic codes that

accurately describe the communication states exhibited by expert

pairs, as well as common transitions between these states. These

communication patterns have informed the development of

guidelines, which have been well received as providing useful

help to novices learning pair programming.

Investigations indicate that students’ experience of pair

programming has been enhanced by knowledge of the guidelines.

Furthermore, during post-study interviews, students who did not

have access to the guidelines throughout the semester expressed a

desire to be exposed to them as part of an introduction into pair

programming.

Feedback from students exposed to the guidelines is positive and

suggests they can improve their pairing experience. Furthermore,

exposure to the patterns and associated guidelines has a

significantly positive effect on the observed communication

within novice pairs.

6. ACKNOWLEDGMENTS
The author would like to thank his supervisors, Dr Janet Hughes

and Prof John Richards, for their attention and support throughout

this project.

The author would also like to thank the programmers behind the

pairwith.us project for allowing him the use of their videos, as

well as the developers and team leaders at Sky Network Services

and Unruly Media, who allowed access to observe and record

their pair interactions.

The research work disclosed in this paper is funded by the

Strategic Educational Pathways Scholarship (Malta). The

scholarship is part-financed by the European Union – European

Social Fund (ESF) under Operational Programme II – Cohesion

Policy 2007-2013, “Empowering People for More Jobs and a

Better Quality of Life”.

7. REFERENCES
[1] Williams, L.A. and R.R. Kessler, All I really need to know

about pair programming I learned in kindergarten.

Communications of the ACM, 2000. 43(5): p. 108-114.

[2] Bryant, S., P. Romero, and B. du Boulay, The Collaborative

Nature of Pair Programming, in Extreme Programming and

Agile Processes in Software Engineering, P. Abrahamsson,

M. Marchesi, and G. Succi, Editors. 2006, Springer

Berlin/Heidelberg. p. 53-64.

[3] Williams, L., et al., Strengthening the Case for Pair

Programming. IEEE Software, 2000. 17(4): p. 19-25.

[4] Srikanth, H., et al., On Pair Rotation in the Computer

Science Course, in Proceedings of the 17th Conference on

Software Engineering Education and Training. 2004, IEEE

Computer Society. p. 144-149.

[5] Williams, L., et al., In Support of Pair Programming in the

Introductory Computer Science Course. Computer Science

Education, 2002. 12(3): p. 197-212.

[6] Sanders, D., Student Perceptions of the Suitability of

Extreme and Pair Programming, in Extreme Programming

Perspectives, M. Marchesi, et al., Editors. 2002, Addison-

Wesley Professional. p. 168-174.

[7] Cockburn, A. and L. Williams, The costs and benefits of pair

programming, in Extreme programming examined. 2001,

Addison-Wesley Longman Publishing Co., Inc. p. 223-243.

[8] Stapel, K., et al., Towards Understanding Communication

Structure in Pair Programming, in Agile Processes in

Software Engineering and Extreme Programming, A. Sillitti,

et al., Editors. 2010, Springer Berlin Heidelberg. p. 117-131.

[9] Beck, K., Extreme programming explained: embrace

change. 2000: Addison-Wesley Professional.

[10] Lindvall, M., et al., Empirical Findings in Agile Methods, in

Proceedings of the Second XP Universe and First Agile

Universe Conference on Extreme Programming and Agile

Methods - XP/Agile Universe 2002. 2002, Springer-Verlag.

p. 197-207.

[11] Gallis, H., E. Arisholm, and T. Dyba. An initial framework

for research on pair programming. in International

Symposium on Empirical Software Engineering. 2003.

[12] Marcano, A. and A. Palmer. pairwith.us. 2009 [cited 2012

July 31]; Available from:

http://vimeo.com/channels/pairwithus.

[13] Bryman, A., Social Research Methods. 2012: Oxford

University Press.

[14] Lazar, J., J.H. Feng, and H. Hochheiser, Research methods in

human-computer interaction. 2009: Wiley.

[15] Glaser, B.G. and A.L. Strauss, The discovery of grounded

theory: Strategies for qualitative research. 1967: Aldine de

Gruyter.

[16] Chong, J., et al. Pair programming: When and why it works.

in 17th Annual Workshop of the Psychology of Programming

Interest Group. 2005. Brighton, UK.

[17] Wetherell, M., S. Taylor, and S. Yates, Discourse as data: A

guide to analysis. 2001: Sage Publications Ltd.

[18] Zarb, M., J. Hughes, and J. Richards, Analysing

Communication Trends in Pair Programming Using

Grounded Theory, in Proceedings of the 26th BCS

Conference on Human-Computer Interaction. 2012, British

Computer Society: Birmingham, United Kingdom.

[19] Murphy, L., et al. Pair debugging: a transactive discourse

analysis. in Proceedings of the Sixth international workshop

on Computing education research. 2010: ACM.

http://vimeo.com/channels/pairwithus

