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ABSTRACT 

Software testing is important, but judging whether a set of 

software tests are effective is hard.  The same problem also 

appears in the classroom as educators frequently include software 

testing activities in assignments.  While tests can be hand-graded, 

some educators use objective performance metrics to assess 

software tests, just as professionals do. The most common 

measures used at present are code coverage measures— tracking 

how much of the student’s code (in terms of statements, branches, 

or some combination) is exercised by the corresponding software 

tests. Code coverage has limitations as it does not assess whether 

computational results from the executed code are checked against 

expectations, and sometimes it overestimates the true quality of 

the tests. We alternatively evaluate students’ tests on how many 

defects the tests can detect from injected errors—mutation 

testing— and actual errors present is others code—all-pairs 

testing. We overcome a number of technical challenges to apply 

these two approaches in classroom assessment systems. 

Afterwards, we compare all three methods—all-pairs testing, 

mutation testing and code coverage—in terms of how well they 

predict defect detection capabilities of student-written tests when 

run against a large collection of known, authentic, human-written 

errors. Experimental results encompassing over 700,000 test runs 

show that all-pairs testing is the most effective predictor of the 

underlying bug revealing capability of a test suite.  Further, no 

strong correlation was found between bug revealing capability and 

either code coverage or mutation analysis scores. Investigating 

effectiveness of student written tests we find that, students are 

mainly “happy path” testers – purpose of their writing tests is to 

show that their code “worked” rather than finding real errors. 

1. PROBLEM AND MOTIVATION  
Testing accounts for 50% of the cost of software development. 

Because of the necessity of testing, educators are including more 

and more software testing as a part of programming and software 

engineering assignments. Automatic assessment systems 

(e.g.,Web-CAT, ASSYST, Marmoset) use code coverage to 

evaluate how well students test their own code. Code coverage 

measures the percentage of a student’s code—e.g., branches or 

statements—that are executed from his test cases. It may 

overestimate test quality as executed code may not be checked 

against expected behaviors. Moreover, students frequently submit 

incomplete and incorrect assignments. If a student completes 60% 

required features and executes all the code from his tests, he will 

achieve 100% coverage. As a result, code coverage calculated on 

incomplete or incorrect solutions will fail to indicate the true 

quality of their tests.  

 

Alternatively, we evaluate students’ tests based on how many 

bugs they can detect from other students submissions—known as 

all-pairs testing—and from a correct solution having artificially 

injected errors in it—known as mutation testing. In all-pairs 

testing a student’s tests are run against the other students’ 

programs. This mechanism gives students a greater realization of 

the density of bugs in their code and their ability to write tests that 

find defects in others’ solutions. Mutation analysis seeds artificial 

errors into code and then checks whether a test suite can detect 

them. Test suites that detect more errors are better than those that 

detect less. Both all-pairs testing and mutation testing have a 

number of technical challenges to apply them in classroom 

assessment systems. We investigate three main research questions 

in this paper:  

1) Is it feasible to use all-pairs and mutation testing for evaluation 

of student-written tests?  

2) Are they better indicators of test quality in terms of defect-

revealing capability of tests?  

3) How effective are student-written tests in finding real bugs? 

We devise novel techniques to address challenges of all-pairs 

testing and mutation analysis and apply them in automated 

assessment systems. We also directly compare all three methods 

of measuring test quality in terms of how well they predict the 

observed bug revealing capabilities of student-written tests when 

run against a naturally occurring collection of student-produced 

defects. Finally, we investigate quality and pattern of students’ 

tests. Experimental results encompassing over 700,000 test runs 

show that the all-pairs testing approach is the best predictor of 

defect detection ability of student-written tests, while neither code 

coverage nor mutation analysis scores were significantly 

correlated with defect detection capability. Analyzing the results, 

we found that students write very similar test cases. While they 

achieved an average branch coverage of 95.4% on their own 

solutions, their test suites were only able to detect an average of 

13.6% of the faults present in the entire program population. 

Thus, students are naïve “happy path testers” - they write tests to 

show that their code “worked”, rather than finding errors or faults. 

2. BACKGROUND & RELATED WORK 
To incorporate software testing as a part of coding, Goldwasser 

[1] proposed an idea of requiring students to turn in tests along 

with their solutions, and then running every student’s tests against 

every other’s programs. Embracing this idea, automated 

assessment tools (e.g., Web-CAT, ASSYST, and Marmoset) 

evaluate student written code against instructor’s tests and use 

some form of coverage analysis to assess quality of students’ tests. 

As tests written in compiled languages, such as Java, do not 

compile against a solution that differs in structure from the 

author’s solution, no capability for all-pairs testing was available. 



Edwards and Shams [3] are the first to provide a practical solution 

for all-pairs testing. Aaltonen et al. [2] proposed using mutation 

analysis to evaluate adequacy of the tests but computational 

overhead makes it impractical to generate real-time feedback and 

use in classroom assessment tools. We proposed solutions for 

these obstacles and evaluated mutation analysis against an 

alternative, code coverage [4]. 

3. UNIQUENESS OF THE APPROACH  
Our research is conducted in three main steps: 

1) Overcoming the challenges of all-pairs and mutation testing in 

classroom assessment, 

2) Comparing how accurately all-pairs testing, mutation testing 

and code coverage predict defect revealing capability of students’ 

tests, and 

3) Analyzing student-written tests to find effectiveness. 

We describe the three steps below. 

3.1 Overcoming the challenges of all-pairs 

and mutation testing 
The main obstacle of using all-pairs testing and mutation analysis 

(when run on buggy versions generated from any solution other 

than the student’s) is the compile-time dependency of the tests on 

its author’s solution. In object-oriented languages, such as Java, 

tests are written as a part of the solution and may refer to any 

visible or public feature of the solution. For example, a student 

may decide to add a helper method in his solution to assist some 

computation. If a student tests such components that arise from 

his personal design decisions that are not present in others’ code, 

then his tests will not compile against others’ or reference 

solutions. We provided a novel way to resolve this issue in Java 

by transforming the student-written tests so that they use 

reflection to defer binding to specific features of a solution until 

run-time [3]. Test sets can be compiled against the particular 

solution for which they were written.  Similarly, instructors 

typically provide their own implementation to double-check 

reference test sets, so instructor-written reference tests will 

compile against the implementation. The byte-code of the 

compiled test sets are then transformed into reflective forms so 

that they use late binding.  This allows the tests to be run against 

any solution, with student-specific test cases failing at run-time 

because of failed reflective method lookups. 

Reflection is a feature of Java that can be used to reduce compile-

time dependencies between code components. In the previous 

work [3], we transformed the byte-codes of the test cases using 

Javassist into purely reflective forms.  Java reflection can be 

complicated and error-prone to use, but we use ReflectionSupport 

[5], a library of methods that completely encapsulates the details 

of using reflection underneath a powerful, streamlined interface 

ideal for writing test actions. As a result, test cases written using 

this library will have no compile-time dependencies on the 

software under test. 

The purely reflective test cases will run against any student 

submission. Individual test cases that depend on features that are 

missing or incorrectly declared in the student’s work fail at run-

time, while other test cases run normally. Therefore, any test set 

will run against all solutions, even incomplete ones. This strategy 

of removing compile-time dependencies from test sets is a key 

technique to applying all-pairs testing. 

solution, 2) removing compile time dependencies from students’ 

tests so that they run against the mutants, and 3) automatically 

detecting if a mutant is a true defect or equivalent to the original.  

Usually, instructors write a reference solution, which is 

presumably correct and includes all the required features of the 

assignment. In earlier work [4], we chose the reference solution to 

generate mutants, so that mutants would cover all required 

behavior, and so that non-equivalent mutants could be considered 

to truly deviate from the required behavior. Mutant generation 

also takes time that slows down analysis of student-written tests. 

By pre-generating the full set of mutants from the reference 

solution ahead of time, mutant generation does not have to be 

performed for each student submission, so it will not slow down 

analysis of student-written tests.  Later, student-written test cases 

are transformed to remove compile-time dependencies. 

Afterwards, we validate students’ tests by running them against 

the reference solution, and then run only the valid test cases 

against the collection of mutants.  Further, we can 

opportunistically (and conservatively) consider mutants as being 

non-equivalent as soon as any valid test case that passes on the 

reference solution (whether the test is written by the instructor or 

a student) fails against that mutant.  Mutants for which no test 

case “witnesses” are discovered during the assignment can be 

(conservatively) judged as being “possibly equivalent” to the 

original, and can be eliminated from the analysis. This approach 

eliminates any need for manual inspection for equivalent mutants. 

Thus, we resolve the challenges of application of mutation 

analysis in an educational setting and evaluate the quality of a 

student’s test from how many mutants it has detected. 

 

Figure 1: The procedure for executing all-pairs testing 

(and also mutation testing). 



3.2 Comparing All-pairs testing, mutation 

testing and code coverage 
We compare the three measures of test quality: all-pairs testing, 

mutation analysis and code coverage for Java programs submitted 

in a CS2 assignment. The goal of this experiment is to evaluate 

the likelihood that a student-written test suite will discover any 

given bug, which we can call the suite’s bug-revealing capability. 

Unfortunately, measuring this capability directly is both 

challenging and expensive in general. Because of the size of the 

collection of programs, manual debugging and manual defect 

counting were cost-prohibitive. Instead, inspired by Edwards [6], 

we constructed a proxy for the set of bugs contained in the student 

programs. All student-written tests were combined into a single 

large test suite, along with the instructor-written reference tests for 

the assignment. This “master” test suite was then run against all 

student programs, collecting all results in a large matrix—one 

column per student program, and one row per test case. From this 

matrix, we could identify equivalent test cases, where every 

program that passed one test case also passed the other, and every 

program that failed one also failed the other. The master test suite 

could then be reduced by eliminating redundant test cases, 

keeping only one representative from each equivalent group. After 

this reduction, all test cases in the master test suite were 

behaviorally distinguishable, in the sense that for any pair of test 

cases, there was at least one program that passed one test case in 

the pair but failed the other. This does not guarantee that the test 

suite is orthogonal, in the sense that test cases do not overlap or 

test the same behaviors. However, it does indicate that there is at 

least one bug that is uniquely detected by each test case. In other 

words, each test case differs from all others in the specific 

defect(s) that it detects—the sets of defects detected by any two 

test cases may overlap, but cannot be identical. This master test 

suite is then a proxy for the set of all bugs contained in all of the 

student-written solutions produced for this assignment. While 

each individual test case in the suite may not necessarily represent 

a single defect, it does represent an “equivalence class” of defects, 

where all bugs in the equivalence class cause the corresponding 

test case to fail. Further, there may still be some bugs present in 

one remaining equivalence class—those that cannot be detected 

by any of the test cases in the master suite. However, for 

sufficiently large numbers of distinct test cases, and distinct bugs 

written in solutions, the equivalence classes proxied by each test 

case grow small, as does the number of bugs that are detected by 

no test cases. Prior work indicates that test cases in a test suite 

created in this fashion are strongly correlated with the bugs 

revealed by manual means, justifying the use of this proxy 

approach [6].  

Once the master suite is established, the number of test cases from 

the master suite that are failed by any given program is a strong 

estimate of the number of bugs present in the program. The 

frequency of the (equivalence class of) bug represented by a 

master suite test case can be determined by how many of the 

student programs fail that test case. Further, by comparing the 

tests in any given student-written test suite against the master 

suite, it is possible to tell which of the (equivalence classes of) 

bugs it can detect. 

3.3 Analyzing effectiveness of students’ tests 
We gather all the students’ tests and screen them by executing 

against the reference solution. Student-written tests fall into three 

categories: valid, invalid and student-specific. Tests that pass 

reference solution are valid, whereas tests that fail are invalid. The 

third category, student-specific tests, has at least one referral to 

any component of the author’s solution that is not present in other 

students’ solutions. We use only valid tests in effectiveness 

analysis. We use the master suite created in comparing all-pairs 

testing, mutation analysis and code coverage to investigate 

effectiveness. To determine effectiveness of tests, we calculated 

how many test cases from the equivalence class were covered by 

each student-written tests.  We also analyzed if student-written 

tests have variation among them or not. 

4. RESULTS AND CONTRIBUTIONS 
We have presented the results in three sections based on the three 

main research questions.  

Feasibility of All-pairs and mutation testing:  

We applied our solution for all-pairs testing to two programming 

assignments and student written test sets in two different courses, 

Fall 2007 CS1 and Spring 2012 CS2 where we transformed all 

students’ tests into reflective forms. The CS1 assignment had 46 

submissions consisting of 463 test cases where 405 (87.5%) were 

valid, 27 (5.8%) invalid and 31 (6.7%) were student specific. 

Next, all the valid test sets were executed against all 46 solutions 

that resulted in a total of 18,225 test runs. Half of the test cases 

failed to find any defects, 63% of the submissions passed all test 

cases, and the average passing rate was 94.4%.The CS2 

assignment had 101 student submissions with 101 test sets 

consisting of 2155 test cases. After running the reflective versions 

of all test sets against an instructor-provided reference solution, 

we got 2001 (92.9%) valid, 126 invalid (5.8%), and 28 (1.3%) 

student-specific test cases. Every test case found defects in at least 

one program and the average passing rate was 83.5%. Most 

importantly, for both the CS1 and CS2 assignments after bytecode 

transformation to reflective forms, no compile time failure 

occurred while testing that ensures feasibility of our solution. 

To evaluate the practicality of our solution for mutation analysis, 

we applied it to six CS1 and CS2 assignments. We pre-generated 

mutants from the reference solution, removed compile-time 

dependencies from students’ tests, validated the tests against the 

reference solution, automatically detected mutants from the valid 

tests, and computed the mutant detection ratio of the tests. Among 

the six assignments, three were from CS1, where the number of 

mutants varied from 42-47. The other three CS2 assignments had 

147, 109 and 305 mutants. In all the assignments, the mutant 

detection ratio was significantly lower than the test coverage 

achieved. For example, the CS2 assignments mutation detection 

scores are 0.685, 0.759, 0.422 and average code coverage scores 

were 0.949, 0.969, and 0.95. From this result, it is clear that 

achieving a higher mutation score was harder than achieving 

higher test coverage. However, we found that when students have 

larger design freedom in assignments, significant number of their 

tests examine components related to their personal design 

decisions. Such student-specific tests could not be evaluated 

against mutants generated from the reference solution. Outcome 

of our mutation analysis is published [4] in ICER, 2013.  

Comparison of all-pairs testing, mutation testing, and 

code coverage:  

To compare defect-revealing capability we used a CS2 assignment 

that was used both in all-pairs testing and mutation testing. 

Evaluating all three test measures in just one assignment required 

a significant effort—in this case, compiling and analyzing over 

700 thousand test case executions. The master suite consists of 



2001 valid tests from students and 82 reference tests. After 

removing redundant tests as described in section 3.2, we found 

112 distinct test cases, where each test case represents one (small) 

equivalence class of bugs that is uniquely identifiable. Every bug 

that is detectable by any test case written by any student (or the 

instructor) is represented in this set. On average, each student 

program passed 76.8% of the test cases in the master suite, with 

every student program containing at least one bug. Each student 

program failed an average of 26 test cases in the master suite. 

Across the 101 programs evaluated, this produced 2,486 

individual faults that could potentially be detected by tests. By 

using this master suite as a proxy for the observable bugs in the 

student solutions, it is possible to calculate which bugs are 

detectable by each individual student’s test suite. By construction, 

each student test will overlap with at least one test from the 

equivalence class of the master suite. We calculate how many tests 

from the equivalence class were covered by each student’s test, 

add up the total number of observable bugs detected by the 

equivalence classes, and divide by total number of observable 

bugs (i.e., 2486). We compare the score of bug-revealing 

capability with the scores of code coverage, all-pairs testing and 

mutation analysis for all the students. The co-relation between 

bug-revealing capability with code coverage, mutation-testing and 

all-pairs testing are -0.0634, 0.0069, and 0.6403 respectively as 

shown in Table 1. Thus experimental results show (Figure 2,3,4) 

that all-pairs testing is the most accurate predictor of defect-

revealing capability, while neither code coverage nor mutation 

analysis scores were significantly correlated with defect detection 

capability.   

Effectiveness of Student-written tests: 

All student-written test suites had less than an 18% chance of 

detecting any given bug occurring in the population of programs 

being investigated. Interestingly, the average branch coverage was 

95.4%, with nearly two-thirds of students (64.6%) achieving 

perfect 100% coverage of all branches in their solution. Here we 

need to mention that students were aware that their tests were 

graded based on coverage and they got feedback from Web-CAT 

on coverage during submission. Clearly, students were able to 

write tests that exercised all of the code they wrote, even if these 

tests were less effective at finding real bugs. 

Analyzing the pattern we found that students write very similar 

tests. The 2001 tests fall into 44 equivalence classes. Examining 

their tests, we discover a similar pattern. They generally write one 

test case per method to show that their code “worked”. In 

conclusion, students were following naïve, “happy path” testers, 

writing basic test cases covering mainstream expected behavior 

rather than writing tests designed to detect hidden bugs. 

We provide practical solutions to apply all-pairs testing and 

mutation analysis to evaluate student-written tests. To our 

knowledge, we are the first to compare these two approaches with 

code coverage in terms of authentic human-written errors. We 

also analyzed effectiveness and pattern of student-written tests. 

These results suggest that educators should strive to reinforce test 

design techniques intended to find bugs, rather than simply 

confirming that features work as expected. 

Table 1: Correlations between test quality measures and 

bug-revealing capability. 

 Bug-revealing 

Capability Score 

Mutant kill ratio 0.0069 

Composite coverage -0.0634 

All-pairs score 0.6403* 

* significant with p < 0.0001 

 

Figure 2: Relationship between all-pairs scores and bug-

revealing capability estimates. 

 

Figure 3: Relationship between mutant kill ratios and 

bug-revealing capability estimates. 

 

Figure 4: Relationship between code coverage and bug-

revealing capability estimates. 
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