
Evaluating Quality of Student-Written Tests
 Zalia Shams and Stephen H. Edwards

Department of Computer Science
Virginia Tech

2202 Kraft Drive
Blacksburg, VA 24060 USA

{zalia18, edwards} @cs.vt.edu

ABSTRACT

Software testing is important, but judging whether a set of

software tests are effective is hard. The same problem also

appears in the classroom as educators frequently include software

testing activities in assignments. While tests can be hand-graded,

some educators use objective performance metrics to assess

software tests, just as professionals do. The most common

measures used at present are code coverage measures— tracking

how much of the student’s code (in terms of statements, branches,

or some combination) is exercised by the corresponding software

tests. Code coverage has limitations as it does not assess whether

computational results from the executed code are checked against

expectations, and sometimes it overestimates the true quality of

the tests. We alternatively evaluate students’ tests on how many

defects the tests can detect from injected errors—mutation

testing— and actual errors present is others code—all-pairs

testing. We overcome a number of technical challenges to apply

these two approaches in classroom assessment systems.

Afterwards, we compare all three methods—all-pairs testing,

mutation testing and code coverage—in terms of how well they

predict defect detection capabilities of student-written tests when

run against a large collection of known, authentic, human-written

errors. Experimental results encompassing over 700,000 test runs

show that all-pairs testing is the most effective predictor of the

underlying bug revealing capability of a test suite. Further, no

strong correlation was found between bug revealing capability and

either code coverage or mutation analysis scores. Investigating

effectiveness of student written tests we find that, students are

mainly “happy path” testers – purpose of their writing tests is to

show that their code “worked” rather than finding real errors.

1. PROBLEM AND MOTIVATION
Testing accounts for 50% of the cost of software development.

Because of the necessity of testing, educators are including more

and more software testing as a part of programming and software

engineering assignments. Automatic assessment systems

(e.g.,Web-CAT, ASSYST, Marmoset) use code coverage to

evaluate how well students test their own code. Code coverage

measures the percentage of a student’s code—e.g., branches or

statements—that are executed from his test cases. It may

overestimate test quality as executed code may not be checked

against expected behaviors. Moreover, students frequently submit

incomplete and incorrect assignments. If a student completes 60%

required features and executes all the code from his tests, he will

achieve 100% coverage. As a result, code coverage calculated on

incomplete or incorrect solutions will fail to indicate the true

quality of their tests.

Alternatively, we evaluate students’ tests based on how many

bugs they can detect from other students submissions—known as

all-pairs testing—and from a correct solution having artificially

injected errors in it—known as mutation testing. In all-pairs

testing a student’s tests are run against the other students’

programs. This mechanism gives students a greater realization of

the density of bugs in their code and their ability to write tests that

find defects in others’ solutions. Mutation analysis seeds artificial

errors into code and then checks whether a test suite can detect

them. Test suites that detect more errors are better than those that

detect less. Both all-pairs testing and mutation testing have a

number of technical challenges to apply them in classroom

assessment systems. We investigate three main research questions

in this paper:

1) Is it feasible to use all-pairs and mutation testing for evaluation

of student-written tests?

2) Are they better indicators of test quality in terms of defect-

revealing capability of tests?

3) How effective are student-written tests in finding real bugs?

We devise novel techniques to address challenges of all-pairs

testing and mutation analysis and apply them in automated

assessment systems. We also directly compare all three methods

of measuring test quality in terms of how well they predict the

observed bug revealing capabilities of student-written tests when

run against a naturally occurring collection of student-produced

defects. Finally, we investigate quality and pattern of students’

tests. Experimental results encompassing over 700,000 test runs

show that the all-pairs testing approach is the best predictor of

defect detection ability of student-written tests, while neither code

coverage nor mutation analysis scores were significantly

correlated with defect detection capability. Analyzing the results,

we found that students write very similar test cases. While they

achieved an average branch coverage of 95.4% on their own

solutions, their test suites were only able to detect an average of

13.6% of the faults present in the entire program population.

Thus, students are naïve “happy path testers” - they write tests to

show that their code “worked”, rather than finding errors or faults.

2. BACKGROUND & RELATED WORK
To incorporate software testing as a part of coding, Goldwasser

[1] proposed an idea of requiring students to turn in tests along

with their solutions, and then running every student’s tests against

every other’s programs. Embracing this idea, automated

assessment tools (e.g., Web-CAT, ASSYST, and Marmoset)

evaluate student written code against instructor’s tests and use

some form of coverage analysis to assess quality of students’ tests.

As tests written in compiled languages, such as Java, do not

compile against a solution that differs in structure from the

author’s solution, no capability for all-pairs testing was available.

Edwards and Shams [3] are the first to provide a practical solution

for all-pairs testing. Aaltonen et al. [2] proposed using mutation

analysis to evaluate adequacy of the tests but computational

overhead makes it impractical to generate real-time feedback and

use in classroom assessment tools. We proposed solutions for

these obstacles and evaluated mutation analysis against an

alternative, code coverage [4].

3. UNIQUENESS OF THE APPROACH
Our research is conducted in three main steps:

1) Overcoming the challenges of all-pairs and mutation testing in

classroom assessment,

2) Comparing how accurately all-pairs testing, mutation testing

and code coverage predict defect revealing capability of students’

tests, and

3) Analyzing student-written tests to find effectiveness.

We describe the three steps below.

3.1 Overcoming the challenges of all-pairs

and mutation testing
The main obstacle of using all-pairs testing and mutation analysis

(when run on buggy versions generated from any solution other

than the student’s) is the compile-time dependency of the tests on

its author’s solution. In object-oriented languages, such as Java,

tests are written as a part of the solution and may refer to any

visible or public feature of the solution. For example, a student

may decide to add a helper method in his solution to assist some

computation. If a student tests such components that arise from

his personal design decisions that are not present in others’ code,

then his tests will not compile against others’ or reference

solutions. We provided a novel way to resolve this issue in Java

by transforming the student-written tests so that they use

reflection to defer binding to specific features of a solution until

run-time [3]. Test sets can be compiled against the particular

solution for which they were written. Similarly, instructors

typically provide their own implementation to double-check

reference test sets, so instructor-written reference tests will

compile against the implementation. The byte-code of the

compiled test sets are then transformed into reflective forms so

that they use late binding. This allows the tests to be run against

any solution, with student-specific test cases failing at run-time

because of failed reflective method lookups.

Reflection is a feature of Java that can be used to reduce compile-

time dependencies between code components. In the previous

work [3], we transformed the byte-codes of the test cases using

Javassist into purely reflective forms. Java reflection can be

complicated and error-prone to use, but we use ReflectionSupport

[5], a library of methods that completely encapsulates the details

of using reflection underneath a powerful, streamlined interface

ideal for writing test actions. As a result, test cases written using

this library will have no compile-time dependencies on the

software under test.

The purely reflective test cases will run against any student

submission. Individual test cases that depend on features that are

missing or incorrectly declared in the student’s work fail at run-

time, while other test cases run normally. Therefore, any test set

will run against all solutions, even incomplete ones. This strategy

of removing compile-time dependencies from test sets is a key

technique to applying all-pairs testing.

solution, 2) removing compile time dependencies from students’

tests so that they run against the mutants, and 3) automatically

detecting if a mutant is a true defect or equivalent to the original.

Usually, instructors write a reference solution, which is

presumably correct and includes all the required features of the

assignment. In earlier work [4], we chose the reference solution to

generate mutants, so that mutants would cover all required

behavior, and so that non-equivalent mutants could be considered

to truly deviate from the required behavior. Mutant generation

also takes time that slows down analysis of student-written tests.

By pre-generating the full set of mutants from the reference

solution ahead of time, mutant generation does not have to be

performed for each student submission, so it will not slow down

analysis of student-written tests. Later, student-written test cases

are transformed to remove compile-time dependencies.

Afterwards, we validate students’ tests by running them against

the reference solution, and then run only the valid test cases

against the collection of mutants. Further, we can

opportunistically (and conservatively) consider mutants as being

non-equivalent as soon as any valid test case that passes on the

reference solution (whether the test is written by the instructor or

a student) fails against that mutant. Mutants for which no test

case “witnesses” are discovered during the assignment can be

(conservatively) judged as being “possibly equivalent” to the

original, and can be eliminated from the analysis. This approach

eliminates any need for manual inspection for equivalent mutants.

Thus, we resolve the challenges of application of mutation

analysis in an educational setting and evaluate the quality of a

student’s test from how many mutants it has detected.

Figure 1: The procedure for executing all-pairs testing

(and also mutation testing).

3.2 Comparing All-pairs testing, mutation

testing and code coverage
We compare the three measures of test quality: all-pairs testing,

mutation analysis and code coverage for Java programs submitted

in a CS2 assignment. The goal of this experiment is to evaluate

the likelihood that a student-written test suite will discover any

given bug, which we can call the suite’s bug-revealing capability.

Unfortunately, measuring this capability directly is both

challenging and expensive in general. Because of the size of the

collection of programs, manual debugging and manual defect

counting were cost-prohibitive. Instead, inspired by Edwards [6],

we constructed a proxy for the set of bugs contained in the student

programs. All student-written tests were combined into a single

large test suite, along with the instructor-written reference tests for

the assignment. This “master” test suite was then run against all

student programs, collecting all results in a large matrix—one

column per student program, and one row per test case. From this

matrix, we could identify equivalent test cases, where every

program that passed one test case also passed the other, and every

program that failed one also failed the other. The master test suite

could then be reduced by eliminating redundant test cases,

keeping only one representative from each equivalent group. After

this reduction, all test cases in the master test suite were

behaviorally distinguishable, in the sense that for any pair of test

cases, there was at least one program that passed one test case in

the pair but failed the other. This does not guarantee that the test

suite is orthogonal, in the sense that test cases do not overlap or

test the same behaviors. However, it does indicate that there is at

least one bug that is uniquely detected by each test case. In other

words, each test case differs from all others in the specific

defect(s) that it detects—the sets of defects detected by any two

test cases may overlap, but cannot be identical. This master test

suite is then a proxy for the set of all bugs contained in all of the

student-written solutions produced for this assignment. While

each individual test case in the suite may not necessarily represent

a single defect, it does represent an “equivalence class” of defects,

where all bugs in the equivalence class cause the corresponding

test case to fail. Further, there may still be some bugs present in

one remaining equivalence class—those that cannot be detected

by any of the test cases in the master suite. However, for

sufficiently large numbers of distinct test cases, and distinct bugs

written in solutions, the equivalence classes proxied by each test

case grow small, as does the number of bugs that are detected by

no test cases. Prior work indicates that test cases in a test suite

created in this fashion are strongly correlated with the bugs

revealed by manual means, justifying the use of this proxy

approach [6].

Once the master suite is established, the number of test cases from

the master suite that are failed by any given program is a strong

estimate of the number of bugs present in the program. The

frequency of the (equivalence class of) bug represented by a

master suite test case can be determined by how many of the

student programs fail that test case. Further, by comparing the

tests in any given student-written test suite against the master

suite, it is possible to tell which of the (equivalence classes of)

bugs it can detect.

3.3 Analyzing effectiveness of students’ tests
We gather all the students’ tests and screen them by executing

against the reference solution. Student-written tests fall into three

categories: valid, invalid and student-specific. Tests that pass

reference solution are valid, whereas tests that fail are invalid. The

third category, student-specific tests, has at least one referral to

any component of the author’s solution that is not present in other

students’ solutions. We use only valid tests in effectiveness

analysis. We use the master suite created in comparing all-pairs

testing, mutation analysis and code coverage to investigate

effectiveness. To determine effectiveness of tests, we calculated

how many test cases from the equivalence class were covered by

each student-written tests. We also analyzed if student-written

tests have variation among them or not.

4. RESULTS AND CONTRIBUTIONS
We have presented the results in three sections based on the three

main research questions.

Feasibility of All-pairs and mutation testing:

We applied our solution for all-pairs testing to two programming

assignments and student written test sets in two different courses,

Fall 2007 CS1 and Spring 2012 CS2 where we transformed all

students’ tests into reflective forms. The CS1 assignment had 46

submissions consisting of 463 test cases where 405 (87.5%) were

valid, 27 (5.8%) invalid and 31 (6.7%) were student specific.

Next, all the valid test sets were executed against all 46 solutions

that resulted in a total of 18,225 test runs. Half of the test cases

failed to find any defects, 63% of the submissions passed all test

cases, and the average passing rate was 94.4%.The CS2

assignment had 101 student submissions with 101 test sets

consisting of 2155 test cases. After running the reflective versions

of all test sets against an instructor-provided reference solution,

we got 2001 (92.9%) valid, 126 invalid (5.8%), and 28 (1.3%)

student-specific test cases. Every test case found defects in at least

one program and the average passing rate was 83.5%. Most

importantly, for both the CS1 and CS2 assignments after bytecode

transformation to reflective forms, no compile time failure

occurred while testing that ensures feasibility of our solution.

To evaluate the practicality of our solution for mutation analysis,

we applied it to six CS1 and CS2 assignments. We pre-generated

mutants from the reference solution, removed compile-time

dependencies from students’ tests, validated the tests against the

reference solution, automatically detected mutants from the valid

tests, and computed the mutant detection ratio of the tests. Among

the six assignments, three were from CS1, where the number of

mutants varied from 42-47. The other three CS2 assignments had

147, 109 and 305 mutants. In all the assignments, the mutant

detection ratio was significantly lower than the test coverage

achieved. For example, the CS2 assignments mutation detection

scores are 0.685, 0.759, 0.422 and average code coverage scores

were 0.949, 0.969, and 0.95. From this result, it is clear that

achieving a higher mutation score was harder than achieving

higher test coverage. However, we found that when students have

larger design freedom in assignments, significant number of their

tests examine components related to their personal design

decisions. Such student-specific tests could not be evaluated

against mutants generated from the reference solution. Outcome

of our mutation analysis is published [4] in ICER, 2013.

Comparison of all-pairs testing, mutation testing, and

code coverage:

To compare defect-revealing capability we used a CS2 assignment

that was used both in all-pairs testing and mutation testing.

Evaluating all three test measures in just one assignment required

a significant effort—in this case, compiling and analyzing over

700 thousand test case executions. The master suite consists of

2001 valid tests from students and 82 reference tests. After

removing redundant tests as described in section 3.2, we found

112 distinct test cases, where each test case represents one (small)

equivalence class of bugs that is uniquely identifiable. Every bug

that is detectable by any test case written by any student (or the

instructor) is represented in this set. On average, each student

program passed 76.8% of the test cases in the master suite, with

every student program containing at least one bug. Each student

program failed an average of 26 test cases in the master suite.

Across the 101 programs evaluated, this produced 2,486

individual faults that could potentially be detected by tests. By

using this master suite as a proxy for the observable bugs in the

student solutions, it is possible to calculate which bugs are

detectable by each individual student’s test suite. By construction,

each student test will overlap with at least one test from the

equivalence class of the master suite. We calculate how many tests

from the equivalence class were covered by each student’s test,

add up the total number of observable bugs detected by the

equivalence classes, and divide by total number of observable

bugs (i.e., 2486). We compare the score of bug-revealing

capability with the scores of code coverage, all-pairs testing and

mutation analysis for all the students. The co-relation between

bug-revealing capability with code coverage, mutation-testing and

all-pairs testing are -0.0634, 0.0069, and 0.6403 respectively as

shown in Table 1. Thus experimental results show (Figure 2,3,4)

that all-pairs testing is the most accurate predictor of defect-

revealing capability, while neither code coverage nor mutation

analysis scores were significantly correlated with defect detection

capability.

Effectiveness of Student-written tests:

All student-written test suites had less than an 18% chance of

detecting any given bug occurring in the population of programs

being investigated. Interestingly, the average branch coverage was

95.4%, with nearly two-thirds of students (64.6%) achieving

perfect 100% coverage of all branches in their solution. Here we

need to mention that students were aware that their tests were

graded based on coverage and they got feedback from Web-CAT

on coverage during submission. Clearly, students were able to

write tests that exercised all of the code they wrote, even if these

tests were less effective at finding real bugs.

Analyzing the pattern we found that students write very similar

tests. The 2001 tests fall into 44 equivalence classes. Examining

their tests, we discover a similar pattern. They generally write one

test case per method to show that their code “worked”. In

conclusion, students were following naïve, “happy path” testers,

writing basic test cases covering mainstream expected behavior

rather than writing tests designed to detect hidden bugs.

We provide practical solutions to apply all-pairs testing and

mutation analysis to evaluate student-written tests. To our

knowledge, we are the first to compare these two approaches with

code coverage in terms of authentic human-written errors. We

also analyzed effectiveness and pattern of student-written tests.

These results suggest that educators should strive to reinforce test

design techniques intended to find bugs, rather than simply

confirming that features work as expected.

Table 1: Correlations between test quality measures and

bug-revealing capability.

 Bug-revealing

Capability Score

Mutant kill ratio 0.0069

Composite coverage -0.0634

All-pairs score 0.6403*

* significant with p < 0.0001

Figure 2: Relationship between all-pairs scores and bug-

revealing capability estimates.

Figure 3: Relationship between mutant kill ratios and

bug-revealing capability estimates.

Figure 4: Relationship between code coverage and bug-

revealing capability estimates.

5. REFERENCES
[1] M. H. Goldwasser, "A gimmick to integrate software testing

throughout the curriculum," SIGCSE Bull., vol. 34, pp. 271-

275, 2002.

[2] K. Aaltonen, et al., "Mutation analysis vs. code coverage in

automated assessment of students' testing skills," OOPSLA,

pp. 153-160, Nevada, USA, 2010.

[3] S.H. Edwards, Z. Shams, M. Cogswell, and R.C. Senkbeil.

Running students' software tests against each others' code:

New life for an old "gimmick". In Proc. 43rd ACM Tech.

Symp. Comp. Sci. Education, ACM, 2012, pp. 221-226.

[4] Z. Shams and S.H. Edwards. Toward practical mutation

analysis for evaluating the quality of student-written software

tests. In Proc. 9th Ann. Int'l ACM Conf. Comp. Education

Research, ACM, 2013, pp. 53-58.

[5] Z. Shams and S. H. Edwards, ReflectionSupport: Java

Refection Made Easy, to appear to appear at The Open

Software Engineering Journal, TOSEJ, 2013.

[6] S.H Edwards. Improving student performance by evaluating

how well students test their own programs. J. Educ. Resour.

Comput., 3(3): Article 1, 2003.

