
ICFP: G: Curry-Howard for Callbacks

Jennifer Paykin∗

University of Pennsylvania

jpaykin@seas.upenn.edu

1 Problem and motivation

Event-driven programming has become an increas-
ingly popular programming model for lightweight
concurrency. It has been used successfully in ap-
plications ranging from message-passing in Concur-
rent ML [10] to asynchronous I/O operations in
Node.js [11] to the dynamic behavior of GUIs in eX-
ene [3], among many others. The unifying idea is
that an event is a computation that executes indepen-
dently from other events and can eventually return a
value.

Unfortunately, event-driven programming can be
difficult because it is based on a combination of fea-
tures that do not play well together: callbacks and
state. Callbacks are higher-order first-class functions.
When combined with stateful abstractions like Ivars
in OCaml’s Async library [7] or Promises in Scala [5],
the resulting programs can be convoluted and error-
prone.

Many event-driven languages have tried to alleviate
this difficulty by introducing various abstractions for
serializing and synchronizing events. Unfortunately
this has been done in a somewhat ad hoc way, re-
sulting in many competing abstractions formulated
in slightly different ways. For example, while events
in Go [1] and Lwt [12] are thought of as lightweight
threads, in Scala they are thought of as write-once
shared state in the form of Futures [5], and in Con-
current ML they are thought of as concurrent pro-
cesses [10].

This work aims to understand the space of event-
driven programming by identifying the structures
common to it with an intuitive perspective from tem-
poral logic. Under this interpretation, an event is a
computation that can eventually return a value, and
so we identify its type with the “eventually” propo-
sition �A of temporal logic.

∗With Neelakantan R. Krishnaswami and Steve Zdancewic.
Supported in part by the by the NSF Graduate Research Fel-
lowship under Grant No. DGE-1321851.

From this observation we are able to better un-
derstand several parts of the event-driven paradigm,
including the selective choice synchronization oper-
ator as an axiom of linear-time temporal logic, and
the callback-based implementation of events as the
logical isomorphism �A = ¬�¬A.

This kind of correspondence between a type sys-
tem and a logic is known as the Curry-Howard
isomorphism. Our work describes a new in-
stance of the Curry-Howard isomorphism that re-
lates continuation-based event-driven programming
and linear-time temporal logic.

2 Background and related work

2.1 Event-driven GUIs

We will use graphical user interfaces (GUIs) as a run-
ning example of event-driven programming in this pa-
per. In a GUI, events capture user behaviors such as
key presses and button clicks. In practice, programs
react to events by registering callbacks, or event han-
dlers, that are triggered by an underlying event loop
once the event occurs.

The structure of the graphical display, on the other
hand, is based on a tree of widgets, which include
buttons, text boxes, and frames. When users inter-
act with these widgets on the screen, their actions
are represented as events associated with those wid-
gets. The programmer specifies how to react when
one of these events occurs by registering callbacks
with particular widgets. For example, the command
b.onClick(fun () -> e) will register the callback
(fun () -> e) to the button b. When the button
gets clicked, the event loop will trigger that callback
with input (). The callback code can then register
handlers to other events, creating a complex web of
dependencies illustrated in Figure 1.

One of the fundamental abstractions used by ex-
isting event-driven languages is the monadic struc-

1



Figure 1: The event loop paradigm

ture of callbacks. Instead of registering a callback
in the event loop, instead think of b.onClick as an
event that will return a unit value once the button
has been clicked. The monadic bind operator bind x

= b.onClick in e can be thought of as waiting for
the click to occur, and then continuing as e. This
sequential interpretation of events leads to a much
more natural control flow for event-driven programs.

Another abstraction used in existing implemen-
tations is the selective choice approach to synchro-
nization. In this approach, choose (e1,e2) is it-
self an event that waits for the first of e1 or e2 to
return a value. For example, choose(b1.onClick,

b2.onClick) is an event that will trigger when a user
clicks on either the button b1 or the button b2.

2.2 Linear-time Temporal Logic

Temporal logic is a kind of logic for reasoning about
time. Although there are many variations on tempo-
ral logic in the literature, for our purposes we only
need a simple propositional fragment, illustrated in
Figure 2. In this fragment, a proposition that is
true is only considered true at the current point in
time. The proposition �A, pronounced “always A,”
is true both now and at every point in the future.
The proposition �A, pronounced “eventually A,” is

Figure 2: Propositions of temporal logic

not necessarily true now, but will be true at some
point in the future. Finally, the negation operator
¬A says only that A is not true now; it makes no
claims on the future of A.

Judgments in this logic have the form ∆ ` A and
mean that under the hypotheses given by ∆, the
proposition A is true now. The “always” operator
can be characterized by how it constructs and uses
propositions of the form �A. If a proposition A is
true now, it is not necessarily always true. However,
if it can be proved only using hypotheses that are al-
ways true, then A itself is always true. On the other
hand, if a proposition A is true always, then it is also
true now.

�∆ ` A

�∆ ` �A

∆ ` �A

∆ ` A

For the “eventually” operator, consider that if a

2



proposition is true now, it is also true later. On the
other hand, if A proves that B is true later, and A
is true later, then B is true later without A. Repre-
sented as inference rules, we have the following:

∆ ` A

∆ ` �A
∆ ` �A �∆′, A ` �B

∆,�∆′ ` �B

Note that if any of the hypotheses used to prove �B
were only true “now,” they wouldn’t necessarily be
valid at the same time A is ready.

The negation operator ¬A is true if assuming A
leads to a contradiction. Such a contradiction can be
reached only if both A and ¬A can be proven.

∆, A ` ⊥
∆ ` ¬A

∆ ` A ∆ ` ¬A
∆ ` ⊥

The propositional logic we present here, despite
having a negation operator, is an intuitionistic logic
where negation is a limited form of implication. In
fact, negation can be thought of as the type of a
callback—a function that does not return a value.

Finally, linear-time temporal logic has an addi-
tional axiom that makes it “linear-time” as opposed
to “branching-time,” which says that all futures lie
on the same timeline. This axiom has the following
form: if A and B will both eventually be true, then
either A will come before B or B will come before A.

�A ∧ �B ⇒ � ((A ∧ �B) ∨ (�A ∧B))

3 Uniqueness of the approach

The strength of the Curry-Howard correspondence is
that it combines things we know about programming
languages and things we know about logic and uses
each to gain a deeper understanding of the other. In
this case, we make the observation that linear-time
temporal logic can be seen as a type system for event-
driven programming. We connect three aspects of
event-driven programming to properties of the logic.

1. An event is a computation that eventually re-
turns a value. As a result, we develop a type
system where the type of an event is the “even-
tually” monad � A from temporal logic.

2. Under this interpretation, the linear-time tem-
poral axiom corresponds to the kind of synchro-
nization called selective choice. The choice of
two events executes them both in parallel and
returns a value recording which occurred first.

3. The implementation of the event-driven ab-
straction consists of a continuation-passing style
(CPS) transformation that can too be explained
by temporal logic. In particular, an event � A
is interpreted as a continuation of continuations:
¬�¬A.

We describe these three contributions more thor-
oughly in the next section.

4 Results and Contributions

4.1 Events as “eventually”

The type system for events is a simple monadic type
system based on the modal logics of Pfenning and
Davies [9] and the temporal logic in Section 2.2. Us-
ing the monadic syntax, we write return e for the
trivial event that immediately returns the value e.
We write bind x = e1 in e2 to refer to the event
that waits for e1 to return a value, and then substi-
tutes that value for x in e2. Operationally we can
think of bind as waiting for an event, this being the
main way of interacting with events in our language

Γ ` e : A

Γ ` return e : �A
Γ ` e1 : �A Γ, x : A ` e2 : �B
Γ ` bind x = e1 in e2 : �B

Logically, each typed expression Γ ` e : A corre-
sponds to a proof of �Γ ` A in the temporal logic.

As an example of how to use these operators, con-
sider a simple user interface. Assume that the library
provides a type Button of buttons, a way to update
the text displayed on a button, and an event that
records the user’s click.

newButton : String→ Button

setText : Button→ String→ Unit

onClick : Button→ �Unit

Using this interface, we can define a counter where
the text displayed on a button reflects the number of
times it has been clicked.

counter (b : Button) (n : Nat) =

setText b (toString n);

bind () = onClick b in

counter b (n+1)

4.2 Synchronization as linear-time

An important consequence of the event abstraction
is the ability to execute multiple events in parallel

3



and record which one occurred first. This kind of
synchronization, known as selective choice [10], can
be thought of as an instance of the linear-time axiom
from temporal logic.

choose : �A× �B → �(A× �B + �A×B)

Using this synchronization operator, we can de-
velop more complex GUIs. For example, consider a
GUI of multiple counters, each recording the num-
ber of times it has been clicked. Since choose exe-
cutes two events in parallel, we can reuse the former
counter example.

counter2 =

let b1 = newButton (toString 0) in

let b2 = newButton (toString 0) in

choose (counter b1 0, counter b2 0)

For a more complex example, consider an inverse
counter—where the label on b1 represents the num-
ber of times b2 has been clicked, and vice versa. This
requires a more subtle interaction between the two
clicks on the buttons.

counter2’ =

let b1 = newButton (toString 0) in

let b2 = newButton (toString 0) in

let loop e1 e2 n1 n2 =

bind z = choose (e1,e2) in

case z of

| in1((),e2) ->

let e1 = onClick b1 in

setText b2 (n1+1);

loop e1 e2 (n1+1) n2

| in2(e1,()) ->

let e2 = onClick b2 in

setText b1 (n2+1)

loop e1 e2 n1 (n2+1)

end in

loop (onClick b1) (onClick b2) 0 0

4.3 A temporal CPS translation

Our final contribution is to explain how our tempo-
ral interpretation of events relates to the implemen-
tation in terms of callbacks. In our ongoing GUI ex-
ample, the standard treatment of the onClick event
is to register a continuation in the heap. That is,
b.onClick(fun k -> e) is an effectful computation
that registers the continuation (fun k -> e) in the
underlying event loop.

What is the type of a continuation? On the one
hand, it takes a value as input (in this case with type

Figure 3: Type of a temporal callback

J�AK = ¬�¬�JAK
JUnitK = ¬¬Unit

JA×BK = ¬¬(JAK× JBK)
JA + BK = ¬¬(JAK + JBK)

JA→ BK = ¬(�JAK× ¬JBK)

Figure 4: CPS translation on types

Unit) but doesn’t return a meaningful value. We write
the return type Answer, and so the continuation is a
function Unit → Answer. However, since the result
type is uniform over all continuations, we could in-
stead write the type of continuations as ¬Unit, the
function that accepts a Unit and doesn’t return a
value.

On the other hand, the type of a continuation
should also have a temporal component. A callback
is not intended to be used right away, but it will be
used at some point in the future. Therefore the type
of the continuation being registered in the event loop
should have the “always” prefix �A, to indicate that
will be available at any point in the future. A con-
tinuation thus has the type �(Unit → Answer) or,
equivalently, �¬Unit. This relationship is described
in Figure 3.

Since b.onClick accepts one of these continua-
tions, its type is ¬�¬Unit, which is an intuitive ana-
logue of �Unit, the type of onClick b interpreted as
an event. This tells us that the logical interpretation
of events has a sound foundation in the continuation-
based implementation.

The translation is based on the temporal CPS con-
version inspired by the fact that �A = ¬�¬A. Al-
though the details, shown in Figure 4, understand-
ably introduce some complexity, they are not surpris-
ing given other such CPS translations.

We extend the translation to expressions, written
JeK, such that if Γ ` e : A then � JΓK ` JeK : JAK. We
add the extra � constructor around the hypotheses in

4



Γ because of the assumption, in the event language,
that variables don’t expire—their types are implicitly
precluded by an “always” operator.

4.4 But wait, there’s more!

This document describes only a rough overview of
the Curry-Howard correspondence that relates events
and temporal logic. Some of the details of the formal-
ization have been left out for brevity and clarity. In
order to turn our intuition about events and temporal
logic into a usable programming language however,
there are many additional factors to consider. We
briefly review some of these, and for further details
see [8].

Linear logic for effects. In order to define an op-
erational semantics for the event-driven language, we
need to account for a myriad of effects. Events them-
selves are effectful computations, buttons in GUIs are
stateful, and so on. Programming languages have a
number of techniques for describing type systems for
effectful programs, but from the perspective of the
Curry-Howard correspondence we rely on Girard’s
linear logic [4].

Extend choose using derivatives. The choose

operator described in this work is limited to synchro-
nizing pairs of events, and is not strong enough to de-
rive synchronization operators for lists or even tuples
of events. By drawing a new connection to McBride’s
derivatives of regular types [2001] we are able to gen-
eralize the selective choice operator not only to finite
data structures containing events, but also to arbi-
trary containers of events including lists and trees.

The event loop implementation. In this docu-
ment we use GUI programming as an example of the
kind of primitive events encountered in existing lan-
guages. To implement these primitives requires inter-
action with the event loop. To encode the event loop
in the context of our temporal CPS translation, we
hide the effectful operations within the answer type
of continuations ¬A in a way inspired by Claessen’s
poor man’s concurrency monad [2].

References

[1] The Go programming language. Website. URL
www.golang.org/.

[2] Koen Claessen. A poor man’s concurrency monad.
Journal of Functional Programming, 9:313–323,
1999.

[3] Emden R. Gansner and John H. Reppy. A multi-
threaded higher-order user interface toolkit. In User
Interface Software, Bass and Dewan (Eds.), vol-
ume 1 of Software Trends, pages 61–80. John Wiley
& Sons, 1993.

[4] Jean-Yves Girard. Linear logic. Theoretical Com-
puter Science, 50(1):1–101, 1987. doi: 10.1016/0304-
3975(87)90045-4.

[5] Philipp Haller, Aleksandar Prokopec,
Heather Miller, Viktor Klang, Roland
Kuhn, and Vojin Jovanovic. Futures and
promises. Scala Documentation, 2013. URL
http://docs.scala-lang.org/overviews/core/futures.

[6] Conor McBride. The derivative of a regular type is
its type of one-hole contexts. 2001.

[7] Yaron Minsky, Anil Madhavapeddy, and Jason
Hickey. Real World OCaml. O’Reilly Media, 2013.

[8] Jennifer Paykin, Neelakantan R Krishnaswami, and
Steve Zdancewic. The essence of event-driven pro-
gramming. 2016.

[9] Frank Pfenning and Rowan Davies. A judgmental
reconstruction of modal logic. Mathematical struc-
tures in computer science, 11(04):511–540, 8 2001.
doi: 10.1017/S0960129501003322.

[10] John H. Reppy. Concurrent Programming in
ML. Cambridge University Press, 1999. doi:
10.1017/CBO9780511574962. Cambridge Books On-
line.

[11] S. Tilkov and S. Vinoski. Node.js: Using javascript
to build high-performance network programs. IEEE
Internet Computing, 14(6):80–83, Nov 2010. doi:
10.1109/MIC.2010.145.

[12] Jérôme Vouillon. Lwt: A cooperative thread library.
In Proceedings of the 2008 ACM SIGPLAN Work-
shop on ML, ML ’08, pages 3–12, New York, NY,
USA, 2008. ACM. doi: 10.1145/1411304.1411307.

5


