MOBILESoft: G: Debugging of Mobile Apps in the Wild Guided by the Wisdom of the Crowd

María Gómez
Inria Lille - Nord Europe
University of Lille 1, France
Email: maria.gomez@inria.fr

I. PROBLEM AND MOTIVATION

With the proliferation of mobile devices and app stores (e.g., Google Play, Apple Store), the development of mobile applications (apps) is experiencing an unprecedented popularity. In 2013, the Google Play Store reached over 50 billion app downloads [3].

Despite the huge number of mobile apps available, the quality of these apps varies greatly. Unfortunately, end-users frequently experience crashes and errors for some apps installed on their devices, as highlighted by the apps’ user feedback [22]. The majority of user complaints are related to app crashes [27].

Although mobile app developers can use a wide range of testing tools [18], [26], [11], [4] to detect such crashes prior to release, many bugs may still emerge once deployed to end-users. When a crash is reported by users, developers must quickly identify and fix issues. Otherwise, due to abundant competition, they risk to lose customers to rival mobile apps and be forced out of the market. Any software developer knows that reproducing failures that users experience in vivo is a major challenge. This task is even more complicated in mobile environments, which suffer from device fragmentation and diverse operating conditions [8].

As an illustration, users recently experienced crashes with the Android Wikipedia app, which crashed when the user pressed the menu button. However, this crash only emerged on LG devices running Android 4.1. Thus, app developers need to know the user interactions and the execution context (i.e., software and hardware configuration) that led to crashes to faithfully reproduce such crashes.

The goal of this research is to drastically improve the quality of mobile apps by complementing existing testing solutions with novel mechanisms to monitor and debug apps after their deployment in the wild. In particular, we focus on a collaborative approach to assist developers in reproducing failures, based on the experience faced by a multitude of individuals. We chose the Android platform because, according to a recent study, the 70% of mobile app developers are targeting Android [32].

II. BACKGROUND AND RELATED WORK

This section briefly summarizes the state of the art in the major disciplines that are related to this research: 1) mobile app testing, 2) failure reproduction, and 3) crowd monitoring.

Mobile app testing. Existing researches have proposed GUI-based testing approaches for Android apps [18], [26], [11], [4].

Crash reproduction. Furthermore, there are techniques for detecting and reproducing crashes in desktop programs. Jindal and Orso [20] introduce BUGEX to recreate field failures in the lab in desktop programs. STAR [12] provides a framework to automatically reproduce crashes from crash stack traces for object-oriented programs. Rößler et al. [31] introduce the approach BUGEX that leverages test case generation to systematically isolate failures and characterize when and how the failure occurs. Artzi et al. introduce ReCRASH [10], a technique to generate unit tests that reproduce software failures. Nevertheless, the aforementioned techniques are not available for mobile platforms. The crash reproduction task poses additional challenges in mobile environments due to high device fragmentation, rapid platform evolution (SDK, OS), and diverse operating context (e.g., sensors).

Crowd monitoring. Another family of approaches monitor apps in the wild. Agarwal et al. [6] propose MOBBUG, a collaborative debugging framework that monitors a multitude of phones to obtain relevant information about failures. This information can be used by developers to manually reproduce and solve the errors. APPINSIGHT [30] is a system to monitor app performance in the wild for the Windows platform. In addition, current crash reporting systems (e.g., SPLUNK [5], GOOGLE ANALYTICS [2]) collect raw analytics on the execution of apps. Our approach goes beyond current crash reporting systems by providing developers with a test suite which defines the steps to reproduce the identified failures. The test suites are enhanced with the operating context conditions that favor the rise of failures, while preserving privacy.

The goal of this research is to improve the quality assurance of apps. The major expected contribution is a crowd-sourced framework to assist developers to detect, reproduce and diagnose bugs in mobile apps after their deployment in the wild.
III. APPROACH AND UNIQUENESS

We propose MoTIF, a crowdsourced approach to assist developers to detect, reproduce and diagnose crashes in mobile apps after their deployment in the wild. MoTIF uses machine learning techniques atop of data crowdsourced from real devices and users. The key idea is that by exploiting the crashes faced by a multitude of users, it is possible to assist developers in isolating and reproducing such crashes in an automatic and effective manner. This automated approach has the potential to save precious time for developers, which is a crucial factor for the success of mobile apps in current app markets.

Figure 1 sketches a high-level overview of the proposal. The approach has three phases.

A. Phase 1: Monitoring the Crowd

Once an app is released and executed on mobile devices, MoTIF monitors app executions to detect the rise of unhandled exceptions. There are many possible causes for app failures [21]: memory exhaustion, network conditions, device incompatibility, etc. If apps manage failures inadequately in their source code, then the app throws an unhandled exception and the operating system terminates the app—i.e., the app crashes).

Whenever a crash arises, MoTIF collects context data in order to confine bugs. In particular, we consider two types of relevant data:

- **App context**, information derived from the execution of the app—e.g., exception traces, and app version;
- **Device context**, information related to the operating context—e.g., device model, SDK version, memory, and state of sensors.

After detecting exceptions in a given app, MoTIF flags the app as buggy-suspicious and increases the monitoring depth to track additional user interaction events from different devices which run the same app in the crowd. Hence, each time the user interacts with a UI element (such as a button) in the app, MoTIF logs the event metadata (i.e., timestamp, view id). During the execution of an app, MoTIF keeps the observed events in memory. Only if the app crashes, MoTIF saves the trace of recorded events in a log file in the device. MoTIF reports the logs to a cloud server when the device is charging and connected to the Internet. Once uploaded, the synchronized traces are automatically removed from the local storage. MoTIF distributes the monitoring among devices and redistributes it periodically to avoid any accidental user’s disturbance.

B. Phase 2: Identifying crash patterns across mobile app executions

MoTIF uses a cloud environment to aggregate the crash traces collected from a multitude of devices in the wild. First, MoTIF transforms the collection of crash traces into a weighted directed graph that we denote as Crowd Crash Graph. MoTIF uses the Crowd Crash Graph to induce 1) the minimum sequence of steps to recreate a crash, and 2) characterize the execution context under which crashes arise.

1) Aggregating Crowd Data: The Crowd Crash Graph represents an aggregated view of all the UI events performed in a given app before a crash arises, with their frequencies. In such a graph, nodes represent UI events (e.g., a click on a button), and edges represent sequential flows between events. Nodes and edges have attributes to describe event metadata and transition probabilities, respectively. In addition, each event records the context properties observed when the event was triggered. Figure 2 shows an example of a Crowd Crash Graph.

Our crash graphs are based on the idea of Kim et al. [23] to aggregate multiple crashes together in a graph. However, our crash graphs capture a different kind of information. Whereas the nodes of Kim et al. represent functions and edges represent call relationships between functions (extracted from crash reports); our nodes represent UI events, and our edges represent sequential user interaction flows. Our nodes and edges also store event and context metadata, and the graph forms a Markov model. In addition, we use crash graphs with a different purpose: to synthesize the most likely sequence of steps to reproduce a crash.

2) Identifying Crash Patterns: MoTIF uses the Crowd Crash Graph to identify repeating patterns of UI events and contexts which appear frequently among crashes. MoTIF implements Graph Traversal Algorithms, Sequential Patterns, and Set Operations to effectively induce the minimal sequence of steps to reproduce a crash as well as the context under which this crash occurs.

MoTIF finds the shortest path from the starting node (S) to an exception node (e) which maximizes the Markov probability of the traversal. Therefore, the shortest S-e path is the maximum probability path, which we call the consolidated trace and is promoted as the candidate trace to reproduce the
crash. The algorithm can return N different traces ordered by descending probability. If the trace does not reproduce the crash, then MoTIF tries with the next one. Since the graph contains the traces of all crashes observed in practice, at least one of the traces is guaranteed to reproduce the crash.

Furthermore, MoTIF searches for recurrent context patterns within a consolidated trace, since not all devices suffer from the same bugs and, some crashes only arise under specific execution contexts—e.g., network unavailable.

C. Synthesizing Crowd Crash Tests

1) Generating Crowd Tests: To help developers to reproduce crashes faced by users in the wild, MoTIF generates black-box UI tests to automatically recreate the consolidated trace. We use Robotium, which is a test automation framework for automatic black-box UI tests of Android applications [4]. Thus, MoTIF translates the sequence of steps in the consolidated trace into a test suite to replay a sequence of user interactions that led to a crash of the application, while taking care not to disclose any sensitive information—e.g., login, password.

2) Crowd-validation of Crash Tests: Before providing the generated test suites to developers, MoTIF executes the tests in the crowd of real devices to assess whether or not 1) they truly reproduce the observed crashes, and 2) they can generalize to other contexts/devices.

First, MoTIF uses the context patterns to select a sample of devices that match the context profile (e.g., LG devices), then checks if the test case reproduces the crash in those devices. MoTIF incorporates the following heuristic to assess test cases: the test case execution should fail and collect the same exception trace as the original wild failure. Later, MoTIF selects a random sample of devices that do not match the context profile, and tests whether they reproduce the crash. If the test case indeed reproduces the crash in a different context, MoTIF concludes that the context it learned is not discriminative enough. If the test case only reproduces the failure on the consolidated context, this context will be included as a critical annotation in the test. Note that, to avoid any user disturbance, MoTIF executes the tests for validation only during periods of phone inactivity, e.g., during the night, and when the device is charging.

D. Phase 3: Hot-patching

Once a crash is isolated, the app developer can use the generated test cases to manually fix the bugs, or use our approach to automatically generate temporary patches. We propose to incorporate automatic software repair techniques (e.g., GENPROG [24]) to generate patches against the failing test suite. We consider all the alternative valid patches generated by these techniques and we send them to the crowd of devices for validation.

Finally, we run all tests against the patches and check, which patches pass the tests. Some tests can only pass in specific group of devices with specific characteristics (e.g., same SDK). Thus, our approach learns which patches are acknowledged for different types of devices and contexts.

We envision two intended uses of MoTIF. First, when a developer cannot reproduce a crash, s/he can activate the monitoring in the wild to quickly reproduce and fix bugs, thus stopping negative reviews. Second, MoTIF can be used as a beta-testing platform to stress apps under real conditions and users before making available the final app release.

The main novelty of this research is to propose a collaborative approach to debug mobile apps when running in the wild. Thus, the bugs are reproduced and fixed in the field, instead of in a simulated environment. This approach exploits crowd feedback to: a) characterize the context under which crashes arise; b) generate in vivo crash test suites; c) select devices for assessing field tests; and d) select devices for assessing app fixes.

IV. RESULTS AND CONTRIBUTIONS

As a starting point, we performed a static analysis to automatically identify potential error-prone apps [16]. We began by mining 1,400,000 online reviews posted by users in the Google Play Store to identify error-related reviews which point out error-suspicious apps. Specifically, we identify 10,658 buggy-suspicious apps in a dataset of 46,644 Android apps.

To evaluate MoTIF, we randomly selected 5 Android apps for which users had reported crashes. We pre-installed MoTIF and the set of apps under test in 5 different Android devices with different characteristics to simulate a diverse crowd. Since engaging users to participate in crowdsourced experiments is a challenge [33], we designed the experiment as a contest with a prize as incentive for users. The goal of the contest was trying to crash the 5 candidate apps as many times as possible in as many different ways as possible, during 60 minutes. Eventually, 10 participants engaged in the contest. Each time an unhandled exception raises, the exception trace and state information is reported to the MoTIF server, together with the user interaction events performed before the crash. The participants were able to generate 52 crashes (each yielding a trace for analysis) across the five apps, distributed across the different devices. Furthermore, to assess the impact of noise, we use the Monkey testing tool [28] to increase the number of crashes. Monkey generates pseudo-random user events (i.e., clicks, touches) in apps running on a device. We let Monkey send 50,000 events to one of the apps (Bites app) in our dataset, and we repeated the process 50 times. The Monkey-generated traces were added to the dataset of crowdsourced traces. Table IV (left) shows, for each subject app, the distribution of crash traces per app, the number of unique crashes amongst them, and the type of crash.

From the collected traces, MoTIF generates a Crowd Crash Graph. By using the graph, it extracts for each app the consolidated trace candidate to reproduce each crash. Table IV (right) illustrates for each app, the average number of events in the traces, the number of events in the extracted consolidated trace, and the compression factor (ratio between Avg. # Events and #Consol. Events). MoTIF obtains compression factors of 7.5 up to 22. In the presence of noise (Bites-Monkey), MoTIF achieved a compression factor of 389.40.

1The devices used are: LG-E617G, Samsung Galaxy Nexus, GT-I9100 (2X) and Nexus S with Android SDKs from 4.03 to 4.1.2.
The next phase of the approach is the generation of a test suite to reproduce crashes. To check if the promoted traces from crowdsourcing can reproduce the crashes, MoTiF generates the corresponding Robotium tests. Then, the test cases are executed on the devices to check whether the app crashes again and, if so, whether the same exception types occur. The test cases correctly reproduce the crashes in 4 (out of 5) apps. Only in the OpenSudoku app, the first consolidated trace failed when trying to reproduce. One benefit of the Crowd Crash Graph is indeed that it will always contain a path that reproduces the crash. Further details of the experiment are available [15].

The third and final phase of MoTiF is to hot-patch the apps to avoid crashes. We randomly selected one of the buggy apps used in the experiment—i.e., the PocketTool app. To automatically avoid the observed failures, we have implemented a basic patching strategy [13], which consists in inserting try/catch blocks in different suspicious locations in the code of the app. These locations are the different methods that appear in the exception traces. The patching strategy is performed by rewriting the bytecode of apps and updating the apps in the devices. After deploying the patched apps, we observe if the apps stop sending exceptions and we learn which patches avoid the bugs in which contexts. In this case study, we generated two patches and only one of them actually avoids the crash.

A. Implementation Details

We have implemented a proof-of-concept prototype to demonstrate the feasibility of the approach. The MoTiF architecture includes a cloud server component and an Android client library that runs on the mobile device. Our approach is transparent to users, who can keep on using their apps as usual.

The Android client library runs the adb tool (Android Debug Bridge) in the device to communicate with the Android virtual machine (named Dalvik) using the Java Debug Interface (JDI). This library enables to intercept user interaction and exception events.

MoTiF sends the data collected in devices to a cloud service for aggregation and analysis using APISENSE [1]. APISENSE provides a distributed crowd-sensing platform to design and execute data collection experiments in mobile devices [17]. To store and aggregate the crash traces collected from the crowd crash graphs, MoTiF creates a graph database with Neo4J [29].

All approaches that record user inputs put privacy at risk [34]. Since our approach provides test suites to replay a sequence of user interactions that lead to a crash of the application, we took care not to disclose any sensitive information (e.g., password, login, address). Specifically, MoTiF incorporates two privacy mechanisms: anonymization [9] and input minimization [35] techniques.

To sum up, the main contribution derived from this research is a crowdsourced monitoring approach, MoTiF, to support developers to detect, reproduce, and fix crashes faced by end-users in the wild. Due to the abundant competition in the mobile ecosystem, developers are challenged to rapidly identify, replicate and fix crashes, in order to avoid losing customers and credits. MoTiF leverages, in a smart way, crash and device feedback to quickly detect crash patterns across a crowd of devices. By using the crash patterns, MoTiF synthesizes in vivo crash test suites to reproduce the crashes. Then, MoTiF exploits the crowd of devices to check if the tests can expose the crashes and no other contexts can reproduce the same crash. We empirically demonstrate the power of the crowd and the benefits of considering a multitude of devices. As future work, we plan to analyze trade-offs between the amount of data collected and the reproducibility of the approach.

Although this approach focuses on bugs that manifest with crashes, the conceptual foundations of our approach could be extended in order to tackle other types of problems (e.g., performance or energy bugs). For example, we have also exploited the power of the crowd to help developers to identify another critical issue for the quality of mobile apps: UI performance regressions [14].

References

1. APISENSE. http://apisense.io
2. Google Analytics. http://www.google.com/analytics
3. [Google: Android app downloads have crossed 50 billion.](http://www.theverge.com/2013/7/24/4553010/google-50-billion-android-app-downloads-1m-apps-available)
4. Robotium. https://code.google.com/p/robotium
5. SPLUNK. https://munt.splunk.com

[28] UI/Application Exerciser Monkey. [Online; accessed Jan-2016].

[29] Neo4j. [Online; accessed Jan-2016].