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Abstract
Language Oriented Modularity (LOM) is a methodology
that involves the implementation and immediate utiliza-
tion of domain-specific languages (DSLs) that are also
aspect-oriented (DSALs). In principle, DSALs are often the
right tool for improving the modularity of modern software
projects and an LOM process is necessary due to the diffi-
culty to reuse them across applications. In practice, however,
LOM is often impractical and DSALs are underutilized in
real-world projects. In this work, we present a novel ap-
proach to reduce the implementation cost of DSALs and
increase the effectiveness of using DSALs. Consequently,
the cost-effectiveness of LOM is improved to a level that
makes it practical for a real-world software development
process. We validate our approach by implementing it con-
cretely for Java. We evaluate our approach by examining the
cost-effectiveness of applying LOM using our approach to
open source projects.

1. Introduction, Motivation, and Problem
Language Oriented Modularity (LOM) [13, 18], taking after
Language Oriented Programming (LOP) [3, 22], is a pro-
gramming methodology that promotes on-demand develop-
ment and use of Domain Specific Aspect Languages (DSALs)
during the software modularization process. A DSAL [5] is
a programming language that is both domain-specific and
aspect-oriented. It provides not only domain-specific ab-
stractions and notations like an ordinary Domain Specific
Language (DSL) does, but also a modularization mechanism
for the separation of domain-specific crosscutting concerns.

With LOM, DSALs are tailored to the crosscutting prob-
lems at hand, rather than force-fitting the latter to the avail-
able General Purpose Aspect Language (GPAL). The LOM
process evolves middle-out. One starts with defining DSALs
that best suit the application-specific modularization needs
and then works outwards, combining high level program-
ming with these DSALs in parallel to their low level imple-
mentation. Since DSALs have only a slim prospect of being
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reused across applications, a viable LOM process for their
on-demand development is essential.

In pursuing LOM practicality, LOP is our baseline for
comparing cost-effectiveness. In LOP, the cost of DSLs is
low thanks to the use of language workbenches. Develop-
ing a new DSL with a language workbench amounts to writ-
ing a transformer (generator) from that DSL to a General
Purpose Language (GPL), and writing a transformer is much
easier than writing a compiler or an interpreter. A language
workbench also provides tool support for implementing the
transformation and for effective editing of DSL code. Once
the DSL code is transformed, it is compiled with the GPL’s
compiler into an executable form, allowing all development
tools that are available for the GPL to be used effectively.

In comparison, the language development cost for DSALs
remains high and aspect development tools typically break
on DSAL code [7, 8].

1.1 High Development Cost
Obliviousness has traditionally been a long-standing princi-
ple in AOP [6]. However, in the context of code transfor-
mations, complete obliviousness is disadvantageous. Con-
sider AspectJ as the target language for implementing sev-
eral DSALs. In AspectJ, the base code cannot refuse ad-
visement (prevent join points from being advised). Conse-
quently, a code transformation that does not preserve the
join point “fingerprint” of the original code is not necessarily
semantic-preserving in the presence of foreign aspect code.
Indeed, translating aspects from different DSALs into as-
pects in AspectJ and compiling them with the AspectJ com-
piler (ajc) may yield incorrect behavior [19]. When the im-
plementation of DSALs via transformation to a GPAL does
not work in general, language workbenches are of little use.

Another difficulty is weaving pieces of advice written in
different DSALs at the same join point shadow. A conflict
occurs when the various pieces of advice are woven in the
wrong order. AspectJ provides some control over the or-
dering of advice by declaring precedence between aspects
(via the declare precedence statement). However, for
programming with multiple DSALs one may need a finer
grained ordering mechanism.
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Table 1. Comparison of tool support for LOM

1.2 Low Effectiveness
Development tools for aspect languages heavily rely on the
representation of advice-join-point relationships in order to
annotate the source code with hints on how aspects are to be
woven into the base code. However, code that is generated
from DSAL code loses track of the location of advice in the
original DSAL code. Consequently, development tools can-
not annotate the code, thus hindering effective programming
with the DSAL.

In addition, the ability to compile the software from the
command line is of a particular interest in real-world projects
because of the use of modern tools for continuous integra-
tion and continuous delivery. The fact that ajc cannot take
DSAL code as input, requires one to modify the compilation
process significantly in order to compile the software from
the command line.

1.3 Problem in a Nutshell
DSALs seem to be “second-class” [7]. DSALs are more
costly to produce than ordinary DSLs and less effective to
program with than GPALs (relative to DSLs w.r.t. GPLs).
On the one hand, DSALs are second-class DSLs because
aspect code transformation introduces a semantic gap that
renders their implementation with existing language work-
benches incorrect in the presence of other DSALs. On the
other hand, DSALs are second-class aspect languages be-
cause aspect code transformation also introduces an abstrac-
tion gap that renders existing GPAL development tools inef-
fective for programming with DSALs.

The challenge of pushing the cost-effectiveness of LOM
to the baseline of LOP is twofold. First, the semantic gap
needs to be bridged to allow language designers implement
composable DSALs using language workbenches. Second,
the abstraction gap needs to be bridged to provide end-
programmers with DSAL development tools that are on par
with those available for a GPAL. This includes not only
aspect development tools and build tools that typically break
on DSAL code, but also general editing tools, such as text-
highlighting and auto-completion that DSALs typically lack.

2. Background and Related Work
DSALs are used for many and various crosscutting problem
domains [5]. Their domain-specific grammar makes them
easier to use by domain experts. Their ability to encapsu-

late in aspect modules crosscutting logic, which is other-
wise scattered and tangled in the application’s base code,
improves software modularity. The code within these mod-
ules is woven into the application’s base code. The process
of matching advice to join points and weaving the advice
accordingly is done by an aspect weaver.

The specification of where and how advice should be wo-
ven typically makes aspects tightly coupled with the struc-
ture of the application code. Moreover, aspects typically
need to retrieve data from the base code. This makes them
tightly coupled also with the representation of the data in the
application code. In contrast, ordinary DSLs are typically
neither coupled with the structure nor with the data repre-
sentation in the application, because the application decides
when to invoke DSL code and to provide it the required data.
Therefore, DSALs tend to be more coupled with the appli-
cation they were designed for than ordinary DSLs are.

Several approaches have been proposed to reduce the
coupling between aspects and base code. For instance, by
using join point interfaces [2] the base code can initiate the
call to the aspect and provide it the required data, similar to
the manner applications interact with ordinary DSLs. How-
ever, these approaches have not made it into AspectJ.

Various development tools aim at facilitating the devel-
opment of DSALs. The Aspect Bench Compiler (abc) [1]
is more extensible than the AspectJ compiler (ajc), allow-
ing one to produce extensions to AspectJ and DSALs more
easily. However, abc is intended for the development of a
particular extension rather than for the composition of ex-
tensions and therefore is not compatible with LOM.

Table 1 depicts a comparison of existing tools that could
be considered for applying LOM. Aspect Composition Frame-
works (CF) are designed for the composition of DSALs.
Some composition frameworks propose transformation ap-
proaches. In XAspects [20], DSALs are transformed into
AspectJ. In Reflex [21], DSALs are transformed to a low-
level kernel language. However, DSALs implemented us-
ing these approaches would not be provided with support-
ive tools for end-programmers. Moreover, these transforma-
tion approaches could lead to wrong program behavior (e.g.,
deadlock) when multi-DSAL conflicts [15] occur.

Multi-DSAL conflicts are conflicts that may happen when
multiple aspect languages are being used simultaneously.
They can be classified as foreign advising conflicts and co-
advising conflicts [19]. Foreign advising refers to a scenario
in which an aspect written in one DSAL advises a join point
that resides within a foreign aspect written in a different
DSAL. A conflict may happen when that join point is not
supposed to be advised. Co-advising refers to a scenario in
which two aspects written in different DSALs advise the
same join point in the base code. A conflict may happen
when the aspects are applied (woven) in the wrong order.
The AWESOME composition framework [16] was designed
for handling multi-DSAL conflicts. It generalizes ajc. Each



DSAL is implemented as a plugin. Rules are set for prevent-
ing foreign- and co-advising conflicts. This way one can pro-
duce composable DSALs for LOM. However, it requires one
to implement a compiler (weaver) plugin, which is a com-
plex task for most programmers. This task is not needed for
ordinary DSLs and thus is not supported by existing lan-
guage workbenches.

Alternatively, one can use a language workbench (LW)
and transform DSALs into an existing GPAL. That way, the
DSAL development process becomes similar to that of ordi-
nary DSLs. Additionally, general editing tools can be easily
generated for the DSALs. However, such a transformation is
conceptually similar to that done in XAspects and thus can
be ruled out for LOM due to multi-DSAL conflicts.

Lastly, a naive composition of a language workbench and
a composition framework simplifies DSAL development (in-
cluding handling of multi-DSAL conflicts) and enables to
generate general editing tools for the DSAL. However, the
development cost remains high because of the use of a com-
position framework and the effectiveness remains low due to
the lack of aspect development tools and build tools [7].

Elsewhere [9] we presented an improved approach for the
composition of a language workbench and a composition
framework that is able to produce DSALs that regain their
first-class status with respect to aspect languages. However,
DSALs remain second-class DSLs and since the develop-
ment cost is of a significant importance in the context of the
LOM process, this solution is not suitable for LOM.

3. Approach and Uniqueness
To make LOM practical we present an approach that enables
the efficient implementation of DSALs by transformation to
a GPAL. With our approach DSAL code is transformed to
GPAL code annotated with metadata, where the metadata is
used to bridge the semantic gap and the abstraction gap, thus
granting DSALs first-class status, in which the DSAL im-
plementer can leverage exiting language workbenches and
the DSAL end-programmer can leverage existing develop-
ment tools. This provides an end-to-end solution to applying
LOM in practice.

Specifically, the metadata is in the form of Java annota-
tions and an interface for invoking transformations. We use
annotations to weaken AspectJ in terms of obliviousness,
strengthen it in terms of advice ordering, and enhance it in
terms of bridging source code locations.

To bridge the semantic gap, a subset of the annotations
control the visibility of join points, thus allowing the def-
inition of the transformation to specify where to suppress
join point shadows (foreign advising). Another annotation
controls the order in which pieces of advice from differ-
ent DSALs are activated at the same join point shadow (co-
advising).

To bridge the abstraction gap, metadata can be attached
within an annotation, enabling AJDT to provide first-class

browsing and navigation capabilities for DSALs. Addition-
ally, DSAL code transformation plugins that implement a
special interface are invoked automatically by the compiler
in order to provide first-class compilation for DSALs.

3.1 First-Class DSLs
The key for making DSALs first-class DSLs is handling
multi-DSALs conflicts declaratively by setting metadata
during the code transformation. By attaching metadata to
a particular program element in the generated code, one can
specify which join points that are associated with that pro-
gram elements should be suppressed from foreign aspects.
This process prevents foreign advising conflicts. By attach-
ing metadata to an advice in the generated code, one can
specify an ordering value that would allow advice-level or-
dering (rather than aspect-level ordering). This granularity
of advice ordering prevents co-advising conflicts.

This reduces the cost of implementing DSALs to that of
ordinary DSLs. The implementation process of DSALs then
amounts to parsing the domain-specific syntax and trans-
forming it into an existing language. No additional adjust-
ments, such as modifying the compiler, are required. That
makes the implementation process of DSALs similar to that
of ordinary DSLs that even existing language workbenches
for ordinary DSLs can be used for implementing DSALs.

3.2 First-Class Aspect Languages
The key for making DSALs first-class aspect languages is
having the GPAL compiler treat DSAL code as if it were
GPAL code in terms of its external API. By attaching meta-
data to advice in the generated code that preserves its source
location in the original DSAL code, the compiler can repre-
sent advice-join-point relationships in a similar way to their
representation with GPAL code. By enabling the compiler
to invoke the code transformation internally as a standalone
utility, the compiler can receive DSAL code as an input.

This increases the effectiveness of programming with
DSALs to the level of that of GPALs. By pointing to the
original DSAL code within advice-join-point relationships,
aspect development tools for the GPAL can work properly
with DSAL code and provide the browsing and navigation
capabilities that are typically available while programming
with a GPAL. By enabling the compiler to receive DSAL
code as an input, build tools for the GPAL can work prop-
erly with DSAL code, allowing to compile the project as if
the DSAL code were GPAL code. Finally, by implementing
the DSAL using a language workbench, one can generate
an IDE plugin that provides common editing tools for the
DSAL from within the language workbench. This completes
the development tools that are generally available while pro-
gramming with a GPAL.

3.3 Uniqueness
The uniqueness of our approach is twofold. First, our ap-
proach is “wholistic”, taking into consideration the whole



Figure 1. DSAL (top) and base (bottom) code in Eclipse.

LOM process. Unlike alternative approaches that target only
certain elements in the implementation or use of DSALs, our
approach considers the end-to-end LOM process as a whole,
including all the stakeholders involved.

Second, our approach is designed with practicality in
mind. One could argue for a finer-grained constructs for han-
dling multi-DSAL conflicts (e.g., those provided by AWE-
SOME) or for support of a wider range of DSALs (e.g., those
that are not reducible to a GPAL). However, that would
likely be at the expense of the cost-effectiveness, and thus
the practicality, of LOM. Our approach provides a process
and tools for addressing an important family of crosscutting
concerns that can be found in real-world projects. Possible
extensions to our approach that do not compromise the prac-
ticality of LOM is left for future work.

4. Results, Contribution, and Conclusion
To validate our appraoch we extended AspectJ with a small
set of annotations and an interface. First, @Hide annota-
tions enable to specify which join points associated with
a program element (type, method, or field) to suppress
from other aspects. Second, the @Order annotation en-
ables to specify an ordering value for an advice. Third,
the @BridgedSourceLocation annotation can store the
source code location of advice in the original DSAL code.
Finally, a Transformation interface enables the compiler
to invoke code transformations internally.

We modified ajc in order to support these extensions.1

Our modifications to ajc are optional — when not in use,
the compiler’s behavior is unaffected, thus preserving the
correctness of the weaving in ajc before the change — and
minimal — we do the minimal changes necessary to support

1 The code changes made to ajc and those that were done as part of the
case studies are available at https://github.com/OpenUniversity/.

Implementation Grammar
Code Transformation Weaver

PluginEV Other

Language SDF Stratego (AST) Java

CF Approach 34 761 (4168) 297 (3001) 1557

Our Approach 34 0 382 (3008) 0

Table 2. LOC in two implementations of COOL

our extensions, thus we expect the process of reapplying
these changes to a newer version of the compiler to be
relatively straightforward.

To evaluate the practicality of our approach in various
scenarios we conducted three case studies, two experimental
and one comparative.

In the first case study, we implemented a DSAL for a
new crosscutting feature of auditing and used it to program
aspect solutions for file operations in the muCommander
project.2 This process, that represents a typical scenario
for LOM, demonstrates the improved cost-effectiveness of
LOM achieved with our approach. The implementation of
the DSAL was completed entirely using the Xtext language
workbench [4], just like implementing an ordinary DSL.
We were able to use development tools while program-
ming with the DSAL. Figure 1 demonstrates some of these
tools. Auto-completion and syntax-error checking (line 6)
and text-highlighting for the DSAL code are shown. In ad-
dition, AJDT markers are displayed next to both the DSAL
code (line 9) and the base code (line 210).

In the second case study, we applied LOM to implement
three DSALs for crosscutting concerns found in the oVirt
project3 [10]. Using these DSALs we managed to separate
out the mentioned concerns. Code scattering was eliminated
by encapsulating code that was spread across many classes
in a single module implemented in the corresponding DSAL.
Code tangling was resolved by extracting code that was
tangled in a common root class into the DSAL aspects. This
case study provided an additional evidence for the improved
cost-effectiveness of LOM using our approach. First, each
DSAL was implemented completely in Xtext in just a few
hours. Second, we were provided with the desired editing
tools, aspect development tools, and build tools, that enable
effective programming with the DSAL even in a complex
and large-scale project like oVirt.

Finally, we implemented COOL [17], a complex DSAL
often used as a benchmark example. The implementation of
COOL provided yet another evidence for the reduced im-
plementation cost using our approach. This time the imple-
mentation was done completely using the Spoofax language
workbench [14], demonstrating that our approach is agnos-
tic to the selection of the language workbench. The synchro-
nization of a bounded-stack using a coordinator (aspect) in

2 http://www.mucommander.com/
3 https://www.ovirt.org/

https://github.com/OpenUniversity/
http://www.mucommander.com/
https://www.ovirt.org/


COOL provided yet another evidence for the effective pro-
gramming with supportive tools. It also illustrated the ef-
fectiveness of our extensions to AspectJ in handling multi-
DSAL conflicts. The deadlock problem reported elsewhere
[15] that occurs when the coordinator is translated to plain
AspectJ was not observed when the @Hide annotations were
placed during the transformation (but reproduced success-
fully when we removed them). However, the most interest-
ing finding in this case study was the results of comparing
our implementation with that in the AWESOME composition
framework. Table 2 shows that our approach required much
less code and the required knowledge was in higher-level
technology (AspectJ rather than bytecode manipulation).

The main contribution of this work is a practical approach
that addresses the Achilles’ heel of LOM, namely that the
DSAL development process is far from being cost-effective.
Our approach is capable of producing DSALs by applying
the same process and tools used for ordinary DSL develop-
ment. This brings the cost-effectiveness of LOM closer to
the baseline of LOP, and makes LOM practical for a real-
world software development process [12, 13].

We also contribute case studies on the effectiveness of
application-specific DSALs in handling crosscutting fea-
tures that are found in real-world projects. The relative ease
of implementing them with LOM makes even their one-time
use cost-effective [11]. More broadly, thinking of aspect lan-
guages as application-specific or even disposable languages
brings about a more agile-like process in designing and using
DSALs. It might also suggest that future research should fo-
cus on making GPALs more expressive (by exposing more
join points, for example) rather than attempting to make
DSALs more reusable.
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