
FSE: G:
Cozy: Synthesizing Collection Data Structures

Calvin Loncaric
University of Washington

Seattle, WA, USA
loncaric@cs.washington.edu

Abstract
Many applications require specialized data structures not
found in standard libraries. Implementing new data structures
is tedious and error-prone. To alleviate this difficulty, we built
a tool that does so automatically: it synthesizes efficient data
structures from short, simple, declarative specifications. Our
tool Cozy uses and extends the technique of counter-example
guided inductive synthesis.

We evaluated Cozy on four real-world programs. We
replaced programmer-written data structure implementations
by implementations synthesized by Cozy. The programmer-
written versions had dozens of bugs, but Cozy’s versions are
correct by construction. The programmer-written versions
were 10–100× larger than the Cozy specifications. Cozy’s
versions were equally fast in 2 cases, a constant 20% slower
in one case, and asymptotically faster in the other case.

Keywords Data structures, program synthesis, automatic
programming

1. Introduction
All mainstream languages ship with libraries implementing
lists, maps, sets, trees, and other common data structures.
These libraries are sufficient for some use cases, but appli-
cations often need specialized data structures with different
operations. For such applications, the standard libraries are
not enough.

To alleviate the need to design, implement, and debug
custom data structures, we propose to synthesize data struc-
ture implementations from high-level specifications. Our tool
Cozy [9] does this using counter-example guided inductive
synthesis (CEGIS) [16]. For instance, given the specification
in Figure 1, Cozy implements AnalyticsLog using a hash ta-
ble whose keys are tuples of query, subquery, and fragment
IDs and whose values are interval trees over the entry start
and end times. The input specification is shown in its entirety.
The output has been reduced to its interface only, as Cozy
produces nearly 5000 lines of Java code to implement the
specification. Since the synthesized code does not need to
be human-readable, it does not need to be well-abstracted;

the large volume of output code is due to inlining at code
generation time to improve performance.

Existing synthesis tools cannot produce such complex
data structure implementations unassisted. One technique is
to require a sketch, or partial implementation, from the pro-
grammer [15, 17]. A synthesizer can then fill in missing parts
of the sketch automatically using CEGIS. Unfortunately, this
imposes an additional burden on the programmer since they
are required to commit to many details about the implementa-
tion. A second technique enumerates many different possible
in-memory representations and uses a planner—similar to
query planners in databases—to implement each data struc-
ture operation in terms of the representation [6, 7]. This trades
programmer effort for compute time: since the planner is a
black box, the only way to search the space of implementa-
tions is by unguided brute-force search. In experiments, this
technique requires over 80 calls to a dynamic benchmark
before finding a good implementation. (The authors did not
report how long this process took.) Even worse, limitations
in the planner mean that complex data structures such as the
one in Myria cannot be synthesized at all.

By contrast, Cozy requires no input from the programmer
beyond a single declarative specification and can find a
complex implementation very quickly: less than 90 seconds
for all real-world specifications we studied. It does so by
inverting the typical synthesis process. Previous approaches
first select a representation—by programmer input or by
brute-force search—and then implement each method—by
synthesis or by planning. In contrast, Cozy first synthesizes
an implementation for each method, and then infers the
necessary representation for the implementation to function
correctly.

Cozy synthesizes method implementations in terms of
outlines, small functional programs that describe how to
retrieve entries from the data structure. The outline language
has been designed so that synthesis can take place before the
data representation is known, and the data representation can
later be inferred from the outline.

Contributions



• We define a small language to outline implementations
of collection operations. The space of implementation
outlines is much smaller than the space of all possible
programs, making outlines feasible to synthesize. Further-
more, the correct in-memory representation of the data
can be inferred from the outline.

• We present a way to prune inefficient outlines early using
a static cost model, allowing Cozy to quickly converge on
efficient solutions.

• We identify a property that makes checking the correct-
ness of an outline tractable: instead of checking correct-
ness on every possible state of the data structure, it suffices
to check correctness for every instance containing only
one entry.

Section 2 describes our approach at a high level, including
how Cozy derives outlines from specifications and how out-
lines are converted into concrete implementations. Section 3
describes results of our evaluation: on four different case
studies, Cozy improves the correctness of data structure im-
plementations while matching performance of human-written
code. Finally Section 4 discusses how our approach relates to
previous work.

2. Approach
Cozy synthesizes data structures in four major steps. Out-
line synthesis, our primary contribution, implements each
query method—e.g. getAnalyticsInTimespan from Figure 1—
using CEGIS. Representation selection examines the query
method implementations to choose the representation of the
data in memory. Code generation uses hard-coded rules to
implement add, remove, and update methods for the chosen
representation. These steps may produce several different
data structures with equivalent estimated costs, so a final
auto-tuning step runs a programmer-supplied benchmark on
each one to choose the best for a particular workload.

2.1 Outline Synthesis
Our approach is based on CEGIS, a synthesis technique that
works by coupling together two components: an inductive
synthesizer that devises a program consistent with a set of
input examples and a verifier that checks whether a program
is correct on all possible inputs.

The inductive synthesizer acts like a “guesser”: it gener-
ates candidate implementations and returns one that behaves
correctly on all examples (test cases) it has ever seen. The ver-
ifier acts like a “checker”: it either proves that a candidate is
correct or produces a concrete example where it misbehaves.
In the latter case, the inductive synthesizer restarts and pro-
duces a new candidate implementation. Each new example
helps refine the candidates until the process eventually finds
a correct implementation.

CEGIS has been used to synthesize data structure code
before [15, 17], but doing so requires additional input from

entry fields
queryId:long, subqueryId:long, fragmentId:int,
opId:int, start:long, end:long, numTuples:long

query getAnalyticsInTimespan(
v_queryId:long, v_subqueryId:long,
v_fragmentId:int,
v_start:long, v_end:long)

queryId == v_queryId and
subqueryId == v_subqueryId and
fragmentId == v_fragmentId and
start < v_end and
end ≥ v_start

class AnalyticsLog {
class Entry { long queryId; ... }

void add(Entry e)
void remove(Entry e)
void update(Entry e, long newQueryId, ...)

Iterator<Entry> getAnalyticsInTimespan(
long v_queryId, ...)

}

Figure 1. Sample input specification for Cozy (above) and
partial corresponding output (below). The specification de-
scribes a real-world data structure in Myria [10]. Given the
specification as input, Cozy automatically generates a com-
plete implementation of the interface shown below, with meth-
ods for adding, removing, and updating entries, as well as the
getAnalyticsInTimespan query for retrieving them. Cozy’s fin-
ished implementation totals nearly 5000 lines of performant
code.

the programmer in the form of a partial implementation.
Our technique does not take any input from the programmer
beyond the specification, introducing several new challenges:

• What should the space of candidate programs be, given
that the data representation is not known yet?

• How will the synthesizer discover efficient solutions,
given that existing implementations of CEGIS make no
promises about the performance of the synthesized code?

• Can candidates be verified at all, given that program
equivalence is undecidable in general?

Inductive Synthesis of Outlines Instead of exploring all
possible data structure implementations, Cozy explores out-
lines. An outline is a high-level functional program that de-
scribes how to retrieve a subset of the elements in the data
structure. Outlines may include hash map look-ups, binary
tree searches, linear-time filters, and other data structure op-
erations.

Given the specification in Figure 1, the outline

HashLookup(state, queryId = v_queryId)



searches the collection state for all elements whose query
ID equals v_queryId . The outline indicates that state should
be stored as a hash map keyed by queryId and the method
should be implemented as a single hash lookup. There may
be many concrete programs implementing a given outline,
and Cozy decides between different concrete programs in an
auto-tuning step after finding a good outline (Section 2.4).

The input to the inductive synthesizer is the specification
and a set of example inputs; the output is an outline consistent
with the specification on the example inputs. The example
inputs are not provided by the programmer. Rather, they are
generated by the verifier. Each example input consists of (1)
a concrete data structure state listing all elements present in
the data structure and (2) values for each input to the query
routine.

For instance, one example input for the Myria data struc-
ture in Figure 1 might be

state = [{queryId : 1, ...}], v_queryId = 2, ...

indicating that there is one element in the data structure
having queryId 1 and the value of v_queryId passed to
the query method is 2. The other values in the example are
not shown. The inductive synthesizer must devise a data
structure implementation that behaves correctly according
to the specification on this example—in this case, the return
value should be an empty iterator, since the only entry in the
data structure state does not match v_queryId .

Cozy’s inductive synthesizer works by brute force search.
Since the space of all possible data structure implementations
cannot be explored exhaustively in this fashion, Cozy makes
use of the equivalence class optimization used in TRAN-
SIT [18]: candidate outlines can be grouped based on their
behavior on the current set of examples. Whenever two out-
lines behave the same on all current examples, one of them
can be dropped from the search space. New examples from
the verifier refine these coarse equivalence classes over time.

Cost Optimization A static cost model defined over out-
lines helps to guide the search toward more efficient solutions.
As an added benefit, the cost model can be used to further
narrow the search space for the inductive synthesizer. Cozy’s
cost model reasons about the worst-case asymptotic cost of
performing the query.

Cozy uses the static cost model in two ways during induc-
tive synthesis. First, the tool tracks a cost ceiling correspond-
ing to the cost of the best valid outline found so far. Any
outline having a greater cost can be safely discarded during
search. Second, when the inductive synthesizer finds that two
outlines belong in the same equivalence class, it can discard
from its cache not just the worse outline but also any outline
that uses the worse outline as a sub-component.

Verification Program verification is undecidable in general,
but Cozy specifications and outlines are designed so that
verification is efficiently decidable. For any given outline, a

counter-example consisting of a single input and a single arbi-
trary data structure element for which the outline misbehaves
is enough to show that an outline is invalid. Amazingly, the
absence of such a counter-example is enough to show that an
outline is valid for all possible inputs and all possible data
structure states. This removes the need to reason about all
possible data structure states; the verifier only needs to con-
sider a single arbitrary element. This is called a small-model
property: the verification problem can be reduced to the task
of finding a very small counter-example.

The restriction that makes Cozy’s small-model property
hold is that neither input specifications nor outlines can
mention the entirety of the data structure state. They can
only state or require properties that are true for all elements
in the data structure. For example, Cozy specifications may
not state that “the data structure holds a maximum of 16
elements,” but they may state that “every element’s age field
is greater than zero.”

Termination Typically, CEGIS algorithms promise that
they always terminate if a program exists that correctly
implements the specification. However, termination is more
subtle for Cozy, since beyond finding an arbitrary solution it
seeks the best solution according to the cost model. The first
correct outline Cozy finds is not likely to be the optimal one.

Cozy runs until it has enumerated every outline cheaper
than the best outline found. To ensure this process terminates,
the cost model must be monotonic—estimated cost always
increases with outline size—and divergent—estimated cost
must approach infinity as outline size approaches infinity. Our
cost model has both of these properties.

In practice, Cozy finds good solutions very quickly: typi-
cally in the first minute of execution. Even so, it could take
many hours to explore the entire space for the optimal out-
line. In our evaluation we impose a 30 second timeout for
synthesis.

2.2 Representation Selection
Every outline implicitly encodes requirements for the repre-
sentation on which it operates. Consider again the HashLookup
outline shown earlier:

HashLookup(state, queryId = v_queryId)

This outline returns a collection of entries, but it requires
the entries to be organized in a map whose entries are
bucketed by queryId . For this outline, Cozy would produce
the representation

state : Map〈queryId ,Set〈Entry〉〉
indicating that the data must be organized as a map by
queryId .

The task of inferring a representation for a particular out-
line is akin to type inference: each outline primitive encodes
some constraints on the representations of the structure it op-
erates on and some constraints on the shape of the structure
it returns.



There are often multiple possible representations for a
given outline; for instance, HashLookup does not specify the de-
sired load factor for the hash map. When this happens, Cozy
enumerates several possibilities and the later auto-tuning step
decides between them. The number of possibilities is typi-
cally small: not more than 12 for any of our case studies.

2.3 Code Generation
After synthesizing outlines and representations for query
operations—e.g. getAnalyticsInTimespan from Figure 1—
Cozy uses hard-coded rules to implement add, remove, and
update.

The add and remove methods are built out of known
implementations for each possible representation type. Other
researchers have investigated synthesizing operations such
as add and remove on binary trees [15], but that approach is
unnecessary here: the implementations of these methods are
well-understood.

Cozy generates efficient update methods as well. A triv-
ial implementation of an update routine might remove the
element from the data structure, alter the relevant field, and
re-insert the element. Cozy instead generates code to find
the new location for the element (if different from its present
location) and move it there. Most updates require very lit-
tle motion; for instance, updating a field on an element in a
linked list does not require any movement.

2.4 Auto-tuning
Beyond just asymptotic performance, high performance data
structures ought to be tuned to particular workloads. Cozy’s
auto-tuning step takes each generated candidate implementa-
tion and evaluates it against a programmer-provided bench-
mark. Cozy outputs the best-scoring implementation. The
benchmark acts as a fine-grained cost model and provides a
natural way to express the needs of a particular workload.

The auto-tuning benchmark is not required; if omitted,
Cozy will select an implementation arbitrarily. The imple-
mentation will still be guaranteed correct.

3. Results
Using four real-world programs as case studies, we have
evaluated to what extent Cozy improves implementation cor-
rectness, reduces programmer effort, and affects performance.
Relative to the original human-written implementations, we
found that Cozy’s synthesized data structures have fewer bugs,
require far fewer lines of code to write, and have comparable
performance.

Case Studies and Methodology Our four case study pro-
grams are Myria [10] (a distributed database), ZTopo [19]
(a topological map viewer), Bullet [1] (a physics simulation
library), and Sat4j [12] (a boolean satisfiability solver). Each
one relies on a core data structure for part of its functional-
ity. The diversity of data structures and use cases illustrates
Cozy’s wide applicability.

For each case study we replaced a central data structure
with a synthesized version, then measured correctness (in
terms of existing tests and bug reports), programmer effort (in
terms of commits and lines of code saved), and performance
(on realistic workloads). Table 1 summarizes our results.

Correctness All the programs except ZTopo have a dedi-
cated issue tracker. Across those three we found 33 distinct
correctness bugs. These include memory mismanagement,
nondeterminism, and functional correctness errors. We ver-
ified that cozy’s implementations do not suffer from any of
these reported issues; they are correct by construction and
they pass all existing tests for each project. Among those
33 issues, Sat4j includes three related to performance. Since
Cozy optimizes its data structures according to a static cost
model, even performance bugs such as these can be avoided.

Programmer Effort Cozy specifications are very small
relative to the original implementations. The shortest original
implementation is Myria at 269 lines of data structure code,
and the longest is Bullet with more than 2500. None of the
specifications for these data structures have more than 25
lines of code. Since the specifications are one to two orders
of magnitude shorter, we have strong reason to believe that
they will be much faster and easier for programmers to write.
Furthermore, Table 1 shows that the programmers did not
produce perfect implementations right away: each required
several commits to get right.

Performance Myria, Bullet, and Sat4j have existing bench-
marks that the developers use to tune performance. We mea-
sured the change in overall performance on these benchmarks
after integrating Cozy’s data structures. For ZTopo, we as-
sembled our own benchmark by recording several minutes
of normal use of ZTopo’s graphical interface. Table 1 reports
the change in end-to-end benchmark time. Performance of
the internal data structure in each case is a dominating factor.

For ZTopo and Bullet, the performance of the synthesized
implementation was nearly identical to the original. In the
case of Sat4j the synthesized implementation was a constant
factor of 15% slower. This was because of a property that
Cozy was not aware of and thus could not exploit: the map
keys in Sat4j’s data structure are all small integers, meaning
that a simple array could be used for look-ups instead of a
hash map.

In Myria the synthesized implementation greatly outper-
formed the original. While the original implementation had
worst-case linear time for some look-ups, Cozy found a syn-
thesized implementation with worst-case O(log n) time in
the size of the data structure. This led to big speedups, es-
pecially when the size of the data structure grew to be very
large.

4. Related Work
Synthesis techniques have seen success in specialized do-
mains such as optimizing bit-vector programs [8] and de-



Program LoC (impl/spec) Commits Bugs Synth. time (s) Benchmark ∆

Myria 269 / 22 88 11 75 137%
ZTopo 1383 / 23 57 15 84 91%
Bullet 2582 / 25 15 - 47 94%
Sat4j 292 / 11 22 7 7 85%

Table 1. Results of our evaluation on four case studies. “LoC” shows the number of lines of code in the programmer-written
implementation versus the specification. “Commits” shows the number of commits in the version history of the programmer-
written implementation. “Bugs” shows the number of bugs reported on the project’s issue tracker for the programmer-written
structure. Note that ZTopo does not have a dedicated issue tracker. “Synthesis time” shows the time required for Cozy to
produce a complete implementation. “Benchmark ∆” shows the overall performance change on a realistic benchmark after
integrating the synthesized structure as a ratio of original time to new time; higher is better, >100% indicates that the synthesized
implementation is faster, and <100% indicates that the programmer-written implementation is faster.

riving string transformations from examples [5]. Our work
extends these techniques beyond program snippets to whole
class implementations.

Automatic data structure implementation began with itera-
tor inversion [3, 4, 11]. Iterator inversion used rewrite rules to
transform set comprehensions into optimized data structures.
The rules are difficult to write and even more difficult to prove
exhaustive. The rewrite engine is fairly naive, so performance
gains are not guaranteed. In contrast, our techniques do not
require explicit rewrite rules and can guarantee optimality
with respect to a cost model.

There was also work on automatic representation selec-
tion for the SETL language [2, 13, 14]. These techniques
performed source code analysis to bound the possible con-
tents of each data structure; the bounds could then be used
to choose a good representation. However, these algorithms
could only generate more efficient set or map implementa-
tions; data structures with more complex interfaces such as
the one in Figure 1 were not possible.

Researchers have investigated using synthesis techniques
to automatically produce implementations of individual data
structure operations [15, 17]. These approaches require the
developer to already know the correct in-memory represen-
tation for their data structure, and they do not optimize for
performance. Instead, they are focused on correctly imple-
menting tricky operations like binary tree transformations.
In the future, these techniques might be used to enhance
Cozy by allowing it to synthesize very low-level operations
instead of using hard-coded rules for operations like binary
tree insertion.

More recent work focused on synthesizing data structures
from relational logic specifications. RelC [6] exhaustively
enumerates candidate data structure representations. A query
planner then determines how to use each representation to
implement the data structure’s methods. Each candidate im-
plementation is evaluated using an auto-tuning benchmark,
and the best one is returned to the programmer. Since the
RelC planner is opaque, the tool cannot rule out candidate
representations quickly and relies entirely on benchmark-

ing to select a good representation. In contrast, Cozy uses a
coarse cost model to guide the search toward better imple-
mentations. Furthermore, Cozy can synthesize a wider class
of data structures than RelC: Cozy specifications can include
disjunctions and inequalities, while RelC specifications can
only have conjunctions of equalities.
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