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Abstract

Because the post-silicon validation process requires a high amount of effort from engineers, we propose the use of a
variety of modeling techniques to tune the silicon. Black-box models interpolate measured physical data (Kriging), while
white-box models generate simplified simulation data with some correlation to the physical data. We demonstrate that
these two modeling techniques, as well as a combined simulation-physical data model (co-Kriging), can be used to tune
registers for the I2C interface. The use of our models decreases the effort necessary to successfully tune the silicon. More
work is needed to apply our approach to high-speed interfaces.

1 Problem and Motivation

Post-silicon validation consumes a significant portion of semi-
conductor product development resources and time. One of
its aspects, electrical validation (EV), aims at ensuring reli-
ably correct operation in a full system environment. Because
parts are subject to manufacturing variability and must oper-
ate in a variety of systems under different conditions, a major
portion of post-silicon validation efforts focuses on tuning the
part to ensure it meets specifications across the broad oper-
ational space. This system is not yet highly automated, and
instead requires many measurements on a population of parts
and systems, which is costly and time consuming. This work
describes an approach to accelerate post-silicon validation by
streamlining the tuning process using a combination of circuit
models and statistical data gathering.

2 Background and Related Work

White-box models rely on a physical representation of the
circuits, but need complex calibration in order to match the
actual system in silicon. A popular framework to implement
such models is Simulink [5] which allows a good trade-off
between model details and level of abstraction. However,
with advanced process nodes, circuit non-idealities make these
models difficult to create and calibrate accurately.

Conversely, Design of Experiments (DOE) and associated
Response Surface Models (RSM) have long been used for
building black-box system representations [1]. These typi-
cally involve factorial-type designs and low-order polynomial
models. However, highly nonlinear systems with many pa-
rameters and noisy measurements require a lot of data and
complex models to achieve the desired accuracy[4]. These
measurements are expensive to obtain. One particular RSM
technique is Kriging [3]. It offers the ability to model very
nonlinear surfaces, can tolerate some measurement errors, and
lends itself to incorporating prior knowledge in the form of
physical models using a technique called co-Kriging [3].

3 Approach and Uniqueness

Our goal is to demonstrate the use of computer models to
efficiently discover the optimal recipe, i.e. the set register
values that enable reliable operation of all parts across the
operational space. We selected the Inter-IC (I2C) interface
[2] as a benchmark, due to its ubiquity and criticality in en-
abling the validation of other interfaces. The I2C protocol is
a low-speed bus which includes both a clock and data line. In
order to ensure that the data is sampled correctly, the timing
between the lines must meet specifications under a variety
of environmental conditions and processing results. In this
case, the recipe consists of a combination of the pull up re-
sistor (Rterm), the clock duty cycle (HCNT), and the delay
between data and clock (SDA-delay).

Figure 1: A simplified I2C circuit diagram, on which the phys-
ical model was based.

3.1 Design of Experiment

Our DOE includes a combination of recipe parameters, chan-
nel lengths, and temperature. This DOE contains two sub-
sets: the larger was used to train our models (training DOE),
and the smaller was used to confirm their validity (testing
DOE). The training DOE uses Plackett-Burman, Axial, and
Latin Hypercube Sampling designs for a total of 50 trials at
each interface speed. The testing DOE uses Latin Hypercube
design for a total of 20 trials at each speed. The two DOE
subsets do not intersect, so we do not train and validate from
the same recipe. We measure timing data that is most likely
to fail specifications: high and low clock period, and the setup
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and hold time. We define these timing measurements in ac-
cordance with Intel’s I2C specifications.

3.2 Generating Models

Using the training data, we create and tune several models.
We then use test data to compare their performance. With
the exception of the physical model, we must create a new
model for each speed.

The physical model was created with Simulink. Because it
inherently models the physical interactions, it was not trained
on the data. However, several model parameters were tuned
using the training data to ensure a better fit. The physical
model block diagram (Fig. 2) includes in both the Data and
Clock lines an nMOS transistor, pull-up resistor, series resis-
tor, and capacitive load to ground.

Figure 2: The physical model block diagram, generated in
Simulink.

The Kriging model was created directly from the training
DOE and measurement data. Because of its interpolative na-
ture, it fits measured values exactly, and predicts the most
statistically likely timing measurements for unmeasured val-
ues.

The co-Kriging model was generated using both the phys-
ical model and a subset of the I2C measured data. In this
approach, the physical model provides the a priori knowledge
of the circuit, while the black-box portion of model accounts
for any systematic error between the physical model predic-
tions and the measured data.

3.3 Recipe Tuning Optimization

In order to select the optimal recipe, we prioritized the mea-
surements based on customer need. For example, high and
low clock period failures rarely limit I2C performance. How-
ever, setup and hold time are often not met. Because spec-
ifications are defined for each speed separately, we created a
different recipe for each speed.

After calculating each model’s prediction for the full suite
of recipes and conditions, we selected the optimal recipe for

each speed. First, we removed recipes that did not meet the
basic specifications on every channel and at every tempera-
ture. Then we selected the recipe which maximized the prod-
uct of setup and hold time, because they were the highest
priority, often fail to meet specifications, and are by defini-
tion negatively correlated.

4 Results

In order to demonstrate how this approach can simplify EV
work, we tested the correlation of our models to silicon at two
training data speeds (100 kHz and 1MHz) and at a different
speed than the training data (400kHz). We then used the
successful models to find the optimal recipe. Even though all
3 modeling techniques proved successful when tuned to a spe-
cific data set, only two of our models correlated successfully
at a new link speed (400kHz). On each plot, (Fig. 3-5) the
x-axis represents silicon data and the y axis represents the
model prediction. The solid black lines represent the specs
for the measurement, and the red dashed line is the ideal 1:1
ratio between silicon and model prediction.

4.1 Model prediction at 100kHz and 1MHz

The Kriging model was able to predict the measurements
most accurately at both 100kHz and 1MHz. The results are
shown in Fig. 3 and Fig. 4, and the Kriging model follows
the ideal ratio better than the physical model, especially for
the low clock period and the hold time.

4.2 Model prediction at 400kHz

In order to determine the relative success of each modeling
technique, we compared their predictions for I2C performance
at an untrained speed. The Kriging model alone was not ac-
curate at 400kHz. Observing the correlation plots in Fig. 5,
we are able to see a clear linear trend between the co-Kriging
model and the physical model, respectively, to the data.

4.3 Optimizing Recipes

We were able to find an optimal recipe at 100kHz, 400kHz,
and 1MHz and demonstrate specification compliance with
acceptable margins. In addition, the Kriging (at 100kHz
and 1MHz) and co-Kriging model calculate the responses for
the full recipe suite quasi-instantaneously, while the physical
model runs at approximately 400 ms per trial. The latter run-
time would increase dramatically for more complex interfaces,
particularly with training and adaptive equalization.

4.4 Conclusions

This work demonstrates that correlated models are useful for
EV work and can reduce the effort required for spec compli-
ance, margin predictions, and recipe tuning.

Because I2C is a simple and slow protocol, once tuned,
the physical model was able to accurately predict the timing
measurements at each speed. However, physical models be-
come considerably more difficult to implement and tune for
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higher speed channels and with more complex circuitry. Fur-
thermore, due to the increasingly large number of interfaces
per SOC it may not be practical to rely solely on physical
models, due to the prohibitive cost of writing, maintaining
and tuning them. This work has demonstrated the ability to
use approximate physical models with co-Kriging to achieve
the accuracy needed for EV work without the overhead as-
sociated with either developing an accurate physical model
or the large number of measurements needed for accurately
fitting a black box model.

While more work is needed to evaluate the proposed ap-
proach for high-speed interfaces with adaptive equalization,
we have shown that it can form the basis for validating slower
links with high confidence and reduced overhead.
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Figure 3: Correlation of a. the Kriging model and b. the physical model to silicon at 100kHz. On each plot, the x-axis
represents silicon data and the y axis represents the model prediction. The solid black lines represent the specs for the
measurement, and the red dashed line is the ideal 1:1 ratio between silicon and model prediction.

Figure 4: Correlation of a. the Kriging model and b. the physical model to silicon at 1MHz.

Figure 5: Correlation of a. the Kriging model, b. the co-Kriging model, and c. the physical model to silicon at 400kHz.
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