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ABSTRACT

Every day, software developers produce complex and feature-
rich programs. Resulting code bases are so large that single
developers cannot entirely understand them, relying on tools
to help them write or debug their code. One such tool is static
analysis, a method of reasoning about the runtime behavior
of a program at compile time to detect bugs automatically.
But from code development to reporting, to testing, different
uses of static analysis have different requirements for which
traditional approaches are sometimes ill-adapted. This results
in more work for their users, and higher abandonment rates
of otherwise powerful tools. We advocate for analyses that
are centered around the user’s needs by introducing the
concept of Just-in-Time (JIT) analyses. JIT analyses are
adaptable to their use cases, reporting the most relevant
results quickly, and computing the rest incrementally later.
In particular, we explore the use case of code development
with the JIT analysis Cheetah. We show in our experiments
that Cheetah allows code developers to fix bugs twice as
fast compared to equivalent traditional analyses.

1 PROBLEM & MOTIVATION

Debugging is a critical part of software development. The
earlier functional and security bugs are discovered, i.e. during
design or implementation, the lower the cost to fix them is
[12]. According to a study conducted by the University
of Cambridge [5], programmers spend 49.9% of their time
debugging. One of the primary methods used to assist them
in this task is static code analysis, that is, analyzing the code
of a program without running it. From Google’s Tricorder
[21] to Oracle’s Parfait [8], many companies have integrated
static analysis in the development phase.

However, the adoption of static analysis tools still shows
high abandonment rates [13]. Complex static analyses require
considerable time and computational resources to return
precise results, causing well-documented shortcomings. We
have identified and aim to address three main challenges:

• Workflow disruptions: According to the size of the ana-
lyzed code base, an analysis can take hours to complete,
which makes the use of code analysis in an Integrated
Development Environment (IDE) difficult. This forces
programmers to separate the tasks of coding and debug-
ging. Previous studies have shown that static analysis
tools should not disrupt the developer’s workflow [7, 13],
making them more likely to be adopted [24].

• False positives: Static analysis tend to report many warn-
ings, among which many are discarded by the users [3].

• Analysis customization: Because users don’t know how an
analysis operates internally, it is sometimes difficult for

them to determine why certain warnings are reported, and
which ones to address in priority. They pour over long lists
of warnings, and put considerable effort into eliminating
false positives and fixing bugs efficiently [8, 13].

While static analysis tools can be very powerful, their
potential is wasted when they are not adapted to their use
case. Traditional static analyses work independent of the
user: users have little knowledge and control over how an
analysis works internally, and the analysis does not take into
account user knowledge about the analyzed code. In the case
of code development, the use of static analysis can break the
code developer’s workflow and add an overhead to their work.
In addition, the analysis does not capitalize on the guidance
the developer can provide to simplify its task (e.g. focus on
certain parts of the code).

In order to provide better support for debugging software
-especially during code development, we advocate for more
adaptive, user-centric static analyses. In our work, we explain
how a large class of static analyses can be adapted to take
user requirements into account during the analysis in order
to return in priority those results that are most interesting
to the user. Interesting results can be results that are easier
to fix, faster to compute, or that are more likely to be true
positives for example.

In this work, we make the following contributions:

• We introduce the concept of Just-in-Time (JIT) analysis
[16] that allows static analysis writers to specify prior-
itization properties used to direct the analysis towards
those results that are most interesting to the end-user.

• We instantiate this concept through a layered analysis
system, and show that existing static analyses can be
adapted to support it with minimal changes.

• We implement Cheetah, a JIT analysis that detects
privacy leaks in Android applications. Focusing on the
use case of code development, Cheetah returns in priority
those results that are located around the code developer’s
working set, gradually expanding the analysis scope to
encompass methods, classes, and modules further away.
Early computations produce simple results quickly enough
for Cheetah to be integrated in an IDE.

• We evaluate Cheetah, focusing on performance and de-
veloper experience. Our experiments show that Cheetah
is able to return initial results under a second, and that
using Cheetah in the IDE enables code developers to fix
warnings twice as fast as with a traditional analysis.

We refer the reader to our technical report [6] for the
JIT algorithm, its proofs of soundness and termination, the
details of Cheetah’s implementation, and the setup and raw
data of our empirical evaluation and user study. Cheetah is
open-sourced [6] and available under the EPL license.



1 public class A {

2 void foo(B b)

3 String s = getPwd ();

4 String t = s;

5 String u = s;

6 b.leakPwd(t);

7 leakPwd(s);

8 log(u);// privacy leak A
9 }

10 void leakPwd(String x) {

11 log(x);// privacy leak B
12 }

13 }

14 public class B {

15 void leakPwd(String y) {

16 log(y);// privacy leak C
17 }

18 }

Figure 1: CWE-200: Information
Exposure.

19 void encrypt(Y y, Z z) {

20 Cipher g = new Cipher ();

21 z.maybeInit(g);

22 // polymorphic call

23 g.doWork (); D
24

25 Cipher h = new Cipher ();

26 y.maybeInit(h);

27 // monomorphic call

28 h.doWork (); E
29 }

30

31 // class X extends Z

32 void maybeInit(Cipher a) {

33 a.init();

34 }

35

36 // class Y extends Z

37 void maybeInit(Cipher b) {

38 }

Figure 2: CWE-227: API Abuse.

39 void main() {

40 F g = new F();

41 F h = new F();

42 F f = null;

43

44 g = f;

45

46 if(...) h = f;

47

48 x = f.a; F

49 y = g.a; G

50 z = h.a; H
51 }

Figure 3: CWE-476: Null Pointer Deref-
erence.

2 BACKGROUND & RELATED WORK

2.1 Data-Flow Analysis

Figures 1-3 present eight bugs/security vulnerabilities, marked

as A to H . Figure 1 contains three privacy leaks, with the
password retrieved at line 3 being written to a log at lines 8,
11, and 16. Figure 2 contains bad initializations of Cipher.
Objects of type Cipher must be initialized with a call to
init() before they are used. In the example, h is incorrectly
initialized, and g may be. In Figure 3, f is set as null at line
42, g and f are aliased at line 44, and h and f may be aliased
at line 46. This causes potential null pointer dereferences at
lines 48, 49, and 50.

All eight bugs can be detected using static data-flow analy-
sis. Data-flow analysis is a class of static analysis that tracks
values along the different statements of a program. For ex-
ample, to detect F , G and H , a data-flow analysis would
track statement by statement whether the different objects
of the program are null or not. Then, if it encounters a
pointer access to an object known as null, it would report
it. Similarly, an analysis tracking sensitive data-flows from
sources to sinks would detect privacy leaks. In Figure 1, the
source is at line 3, and the three sinks, at lines 8, 11, 16.
Such an analysis is called a taint analysis [22].

2.2 Batch-Style Analysis

Traditional static analyses typically compute results over the
whole program space, before reporting them all at once. In
this paper, we will refer to this behavior as batch-style. To
avoid overwhelming the users with too many results, analysis
tools often provide a classification system, grouping results by
confidence for example. Notable ordering and classification
approaches [17] include mining software history to determine
typical fixes [14], machine learning on result features [15], or
querying the user [9].

Batch-style tools apply those techniques as post-processing
modules, run after the analysis terminates. On the other
hand, JIT analyses compute results depending on ordering
properties at analysis time, delivering results directly in the
right order. This guarantees that the first results are reported
immediately, and that they are of most interest to the user.
Applied to code development, this allows a JIT analysis to
run in the background of an IDE, as the developer writes.
This system is much less intrusive, as it does not need to
interrupt the user while the analysis runs, and returns results
in small, digestible batches instead of a single long list.

2.3 Incremental Analysis

Incremental analyses [1, 25] operate on small changes to the
code base. For each change made by the user, the analysis
only recomputes those results that are affected by the change.
Like Cheetah, such approaches efficiently shorten the long
waiting times. But they require regular full-program analysis
runs from time to time in order to re-initialize the state of
the analysis. They also do not provide any inherent result
ordering.

2.4 Staged Analysis

Like Cheetah, Parfait [8] operates in stages. It runs an
initial bug detector, and cascades different analyses in an
increasing order of complexity and a decreasing order of
efficiency to confirm the initial findings. Unlike our approach,
one analysis layer in Parfait may invalidate bugs reported by a
previous layer. Results that appear and disappear later can be
confusing for use cases where results are reported to humans
as they are found. In our approach, each layer of a JIT
analysis uses previously computed information to detect new
bugs and does not invalidate previously reported warnings.
This minimises disruption in the developer workflow.
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3 APPROACH

3.1 Just-in-Time Analysis

In order to report all potential issues, a static analysis must ex-
plore every possible run scenario of the analyzed program. In
Figure 2, the call at line 21 may dispatch to both maybeInit()

methods, so the analysis must model both possibilities.
A batch-style analysis may visit those possibilities in any

order. A JIT analysis prioritizes some possibilities over others,
based on user-defined ordering properties. The analysis writer
specifies in the analysis which parts of the code should be
analyzed first, and which ones should be left for later. In
essence, a JIT analysis gives the user control over the analysis,
and allows them to guide it to suit their use case.

Let us consider the case of code development. The end-
users (e.g. developers) are more likely to be interested in
warnings that are located around their current working set.
By prioritizing local flows, an analysis can explore a smaller
code base first, and gradually increase the analysis scope to
include methods, classes, etc. Unlike batch-style analyses
which typically start at the main method, a JIT analysis can
start at any point in the code. Here, the analysis’ starting
point is the current edit point. Supposing that the developer’s
current edit point is located in method foo in Figure 1, a
JIT taint analysis would report A first -as it is located in

foo, then, B -as it is in the same class, and finally, C .
With another ordering system based on computational re-

sources, an analysis could for example resolve monomorphic
calls before polymorphic calls, which are more computation-
ally expensive to analyze since all potential callees must be
explored. Thus, E would be reported first and D would be
left for later. Similarly, resolving aliases also requires extra
computation, so F would be returned before G and H .

Another prioritization example is by confidence, returning
those results that are most likely to be true positives first.
Monomorphic calls more likely lead to true positives than
polymorphic calls. Similarly, direct assignments (line 42) can
be prioritized over conditional assignments (line 46).

3.2 Layering System

The prioritization system of a JIT analysis is based on priority
layers. We define trigger points in the analyzed program as
statements at which the analysis pauses and comes back later.
The priority layers determine when the analysis resumes at a
particular trigger point compared to others.

Let us consider a taint analysis analyzing the program of
Figure 1. For code development, we consider a prioritization
system by locality, as presented in Section 3.1, where users are
most interested in those results that are close to their working
set. The analysis’ starting point is the current edit point.
The triggers are method call sites, making the analysis pause
and resume at lines 7 and 6. The priority layers prioritize
call sites by distance to the current edit point, as shown in
Table 1. Supposing that the starting point of the analysis is
foo, the trigger at line 7 will have a higher priority as the
one at line 6, as it refers to a method in the same class as
foo, as opposed to the same file.

Layer Distance from the edit point

L1: Method Same method.

L2: Class Same class.

L3: Class Lifecy-
cle

Lifecycle methods in the same class.

L4: File Same file.

L5: Package Same package.

L6: Monomorphic In the project, along monomorphic calls.

L7: Polymorphic In the project, along polymorphic calls.

L8: Android Life-
cycle

In the project, along the implicit
dataflows in lifecycle methods, to handle
interactions between various application
components.

Table 1: Layers of CHEETAH. Each layer extends the analysis
to a certain distance from the edit point.

The resulting JIT taint analysis executes as follows:

(1) The user triggers the analysis at the foo method.
(2) The analysis starts analyzing the foo method.

(a) The analysis pauses at line 6. It ignores the call
and continues analyzing foo.

(b) The analysis pauses at line 7. It ignores the call
and continues analyzing foo.

(c) A is found and reported.
(3) The analysis resumes at line 7 (because its priority

is higher than the call at line 6). It explores the call

at line 10 and reports B .
(4) The analysis resumes at line 6. It explores the call

at line 15 and reports C .

3.3 Architecture of the JIT Framework

A traditional batch-style data-flow analysis is generally im-
plemented on top of an analysis solver, i.e. the engine that
runs the analysis. When implementing an analysis (e.g. a
taint analysis), the analysis writer must specify how the
analysis should track which values throughout a program by
overwriting transfer functions.

In the case of a JIT analysis, the solver contains an addi-
tional prioritization module that handles the pause-resume
behavior of the analysis based on the specified triggers and
layers. In addition to the transfer functions, the writer must
also specify (1) the starting point(s) of the analysis, (2) the
different layers, (3) how to recognize a trigger and (4) how
the priority layers map to the triggers.

With this architecture, an analysis writer can instantiate
different types of analyses and different prioritization policies
without modifying the JIT solver. It is also possible to modify
existing batch-style analysis solvers to add a prioritization
module, transforming existing batch-style analyses into JIT
analyses with minimal changes, as shown in our technical
report [6].
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4 CHEETAH

We have implemented Cheetah, a JIT taint analysis that
detects privacy leaks in Android applications. Cheetah is
designed for code development, and aims at providing results
close to the current edit point in priority. It defines trigger
points as call sites, and follows the layering system presented
in Table 1. This choice of layers also helps return the first
results quickly, as lower layers (L1-L3) require minimal class
loading and computational resources.

Dedicated layers (L3 and L8) help model the callbacks of
the Android framework. Similarly to Arzt et al. [2], we create
a dummyMain method that makes the method calls between
those callbacks explicit. In our approach, the dummyMain is
distributed over the layering system as well.

To support code developers, Cheetah is designed to ana-
lyze the whole code base, including unreachable code. When
writing an application, developers may work on unreleased
features or incomplete code. Typical analyses ignore unreach-
able code, a feature that Cheetah provides.

Cheetah is built on top of the Soot analysis framework [23]
and the Heros IFDS solver [4]. It uses the sources and sinks
definitions described by Rasthofer et al. [19]. Cheetah is
integrated in the Eclipse IDE as a plugin (Figure 4) and runs
in the background as the developer codes. It is triggered
every time the project is built, starting from the method that
has the focus. A demo video is available online [6].

5 RESULTS

To evaluate how Cheetah integrates into the development
workflow, we conducted a set of empirical experiments and a
user study. We compared Cheetah to Base, a batch-style
taint analysis for Android applications. We first implemented
Base and modified it as described in Section 3.3 to obtain
Cheetah. Thus, both analyses share the same solver and
transfer functions. We ran our experiments on a 64-bit
Windows 7 machine with one dual-core Intel Core i7 2.6 GHz
CPU running Java 1.8.0 102.

5.1 Empirical Evaluation

Cheetah and Base were run on 14 real-life Android applica-
tions from F-Droid [11]. We measured when each warning
was reported. We conducted two sets of experiments with
different starting points for Cheetah. The first set was run
with starting points close to known privacy leaks, represent-
ing cases when the user investigates a particular bug. The
second set was run with 20 starting points per application,
randomly selected using Boa [10]. This represents cases when
users are not using Cheetah when developing. Base has a
unique starting point: a dummy main method [2].

The experiments show that:

• Cheetah reports the first result in a median time of less
than one second (Nielsen’s recommended threshold for
interactive user interfaces [18]), allowing the developer to
remain focused on their work.

• Cheetah reports 11% of its warnings in lower layers
(L1-L4). If directed to known sources of bugs (starting

Figure 4: Graphical user interface of CHEETAH. The
Overview view (bottom) lists the warnings as they are re-
ported. The Detail view (right) presents the details of a se-
lected leak. All warnings in the Overview view are grayed out
at each new run of the analysis. They switch to black when
they are re-confirmed. Fixed warnings are removed. The
source-sink icons in the left gutter are grayed out accordingly.

points near known privacy leaks), Cheetah reports 33%
of its warnings in layers L1-L4. We see that when the
user focuses on a particular warning, the analysis reports
the first warnings faster, in earlier layers.

• Cheetah returns the last result in 4.26× more time than
Base. We attribute this to the full code coverage feature
of Cheetah, which considers a much larger code base
than Base for the same application.

5.2 User Study

We integrated both Cheetah and Base as Eclipse plugins,
and conducted a user study with 17 participants of diverse
backgrounds and knowledge of static analysis. The partici-
pants were given the task of refactoring Bites, an Android
application from F-Droid [11], while keeping the number of
privacy leaks to a minimum. Each participant performed the
task twice on different parts of the application: once with
Cheetah and once with Base. Nine participants started
with Cheetah, eight with Base. In the time limit of 10
minutes allocated to each task, we measured how many leaks
the participants fixed, and how long it took to fix them.
Afterwards, the participants filled a questionnaire and were
interviewed individually.

We have observed the following:

Tasks: Figure 5 presents the distribution of the time taken
to fix a leak for the two tasks. We see that for both tasks,
participants using Cheetah took half as long as participants
using Base to fix a leak. We also observed that participants
using Cheetah fixed more leaks than participants using
Base. For task 1, Cheetah users fixed a median of 4 leaks
and Base users fixed 2 leaks. For task 2, Cheetah users
fixed 4 leaks, and Base users, 3 leaks.
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Figure 5: Violin plot representing the distribution of the times
to fix leaks across all participants, by task and tool used during
the task. Each horizontal line represents data leaks fixed in
the corresponding time. The length of a line is the number of
leaks fixed in that time. Dashed lines represent medians.

Questionnaire: In the questionnaire, participants were asked
to compare both tools. When asked about the likelihood
of recommending the tools to a friend on a 11-point Likert
scale [20], Cheetah’s score was of 7.4, against 2.7 for Base.
Participants found Cheetah less complex than Base. They
found its functionalities well-integrated, and responded that
they were more likely to use it frequently compared to Base.

Interviews: Twelve participants reported that Cheetah was
best suited for code development, due to its quick updates.
Two participants expressed concerns on CPU usage, as Chee-
tah performs more work than Base on the same application.

6 LIMITATIONS AND FUTURE WORK

We have presented the concept of JIT analysis, which aims at
integrating user requirements into static analysis. We have
seen how to derive a JIT analysis from a batch-style analysis,
and have shown with Cheetah that user-centric analyses
can provide better user support than traditional analyses.

As it is now, Cheetah performs a whole-program analysis
at each run, re-computing unnecessary information. We plan
to incrementalize it in the future. The JIT algorithm is
currently limited to distributive data-flow analyses. It would
be interesting to extend it to other types of analyses.

Cheetah is one application of JIT analyses for code de-
velopment. In the future, we plan to develop a more general
framework to make batch-style analyses user-centric. This
would simplify the definition of layering systems, allowing
analysis writers to implement JIT analyses for different use
cases, and produce more useful static analyses.
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