Improved Chromakey of Hair Strands via Orientation Filter Convolution

Chloe LeGendre
USC Institute for Creative Technologies

David Krissman
USC Institute for Creative Technologies

Paul Debevec
USC Institute for Creative Technologies

Figure 1: (a) a photographed subject in front of a green screen, (b) the alpha channel obtained using automatic keying (IBK), with a high-resolution inset, (c) the foreground element corresponding to b, (d) a composite result using b and c. (e) the orientation filter convolution response image corresponding to a, (f) the alpha channel obtained using our approach, combining e and b, with a high-resolution inset, (g) the foreground element corresponding to f, (h) a composite result using f and g.

ABSTRACT

We present a technique for improving the alpha matting of challenging green-screen video sequences involving hair strands. As hair strands are thin and can be semi-translucent, they are especially hard to separate from a background. However, they appear as extended lines and thus have a strong response when convolved with oriented filters, even in the presence of noise. We leverage this oriented filter response to robustly locate hair strands within each frame of an actor’s performance filmed in front of a green-screen. We demonstrate using production video footage that individual hair fibers excluded from a coarse artist’s matte can be located and then added to the foreground element, qualitatively improving the composite result without added manual labor.

CCS CONCEPTS
• Computing methodologies → Image processing;

KEYWORDS
Green-screen keying, image matting, hair segmentation

ACM Reference format:
DOI: 10.1145/3102163.3102200

1 INTRODUCTION

Live-action compositing, where an actor filmed in a studio is placed over a novel background plate image, is a common visual effect in television and film. Green-screen keying is used most frequently, due to the relatively simple recording process, wherein an actor is filmed in front of a green (or, alternatively, blue) material using a standard motion picture camera. While filming is straightforward,
We convolve each input image in the sequence with a bank of 18 filters (from Red Giant) to create a coarse alpha matte. IBK and Primatte approach to be used in place of algorithms like IBK or Primatte, filters scaled to the expected hair width for the footage (oriented second-derivative-of-Gaussian filters (every 10 age features robustly and improve the quality of semi-automatically knowledge, no prior work has used them to improve compositing. Such filters including first or second derivative-of-the coarse matting and background, which is further exacerbated by motion blur in the footage. Blond actors are sometimes filmed on a blue screen to maximize color difference to facilitate matting.

Aksoy et al.[2016] described a color-unmixing based keying approach to be used in place of algorithms like IBK or Primatte, demonstrating strong performance on intricate object boundaries like hair, using comparatively one-tenth of an artist’s time. However, much of an artist’s time in traditional semi-automatic coarse matting and the subsequent manual correction stages may be spent resolving intricate hair regions. We propose that orientation detecting image filters can be used to detect hair strand-shaped image features robustly and improve the quality of semi-automatically generated alpha mattes, thereby reducing the time spent in both the coarse matting and correction stages of a traditional compositing workflow. Such filters including first or second derivative-of-Gaussian or Gabor filters have been used to locate hair fibers in images [Beeler et al. 2012; Jakob et al. 2009], but, to the best of our knowledge, no prior work has used them to improve compositing.

2 METHOD

We convolve each input image in the sequence with a bank of 18 oriented second-derivative-of-Gaussian filters (every 10°), with the filters scaled to the expected hair width for the footage (σ = 1.5 pixels for our experiments). We compute the per-pixel maximum filter response across the orientations, which has a large value only for pixels comprised of lines of the specified hair width. In practice, we filter the green channel only, to reduce the effect of noise for the Bayer pattern sensor. The orientation response image for a radiometrically linear image is also linear, but we square the response image to suppress small pixel values. We compute our final alpha channel as the maximum of the coarse artist-generated matte and the filter response image, which is first scaled by a constant. Besides the hair width, this scale factor is the only parameter for the compositing artist to adjust. The filter response image is effectively another channel that can be used for compositing.

3 RESULTS AND DISCUSSION

We filmed a diffusely-lit subject in front of a green screen as in Fig 1a using a Canon 1DX Mark II, recording 4K resolution motion-JPEG video (23.976 fps, 180° shutter, ISO 500, and aperture f/11). Using the Technicolor Cinestyle log-response picture style and its corresponding linearization table, we recovered radiometrically linear footage. We show the results using our approach in Fig. 1 and Fig. 2, including the hair filter response map in Fig. 1e. We also provide the video results as supplemental material.

Although the small color and brightness differences between the foreground hair strands and green background are a challenge for standard keying algorithms, the oriented filters can detect this weak signal. We demonstrate that hair fibers parsed as background pixels by standard chroma keying algorithms can be recovered with our approach. Additionally, since the filters are designed to detect strand-shaped image features, compression artifacts are not incorrectly identified as hair fibers.

The method performs best when hair strands are in focus and captured with minimal motion blur. Since filters are scaled to the expected width of focused, stationary hairs, moving or out-of-focus fibers produce weaker orientation filter responses. Additionally, the filters are designed to detect light hairs on a dark background, or by inverting the filters, to detect dark hairs on a light background. Subjects with a mixture of dark and light hair strands would be more challenging to key using our approach.

4 ACKNOWLEDGMENTS

The authors wish to thank Randy Hill, Kathleen Haase, Angelika Von Chamier, and Michael Trejo for their important support of this work. This project was sponsored by the U.S. Army Research Laboratory (ARL) under contract W911NF-14-D-0005 and in part by a USC Annenberg Ph.D. Fellowship. The content of the information does not necessarily reflect the position or the policy of the Government, and no official endorsement should be inferred.

REFERENCES