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1 Problem & Motivation

Sparse linear algebra is a key component in many scientific
simulations ranging from quantum physics to fluid and struc-
tural mechanics. However, iterative numerical methods and
important building blocks of sparse linear algebra frequently
feature strong data dependencies, making them difficult to
parallelize. Typically, loop-carried dependencies occur in
iterative solvers (e.g., Kaczmarz, Gauss-Seidel) or precondi-
tioners and write conflicts show up in the parallelization
of building blocks such as symmetric sparse matrix-vector
multiplication. Scalable, hardware-efficient parallelization of
such methods and kernels is known to be a challenge. Multi-
coloring is a widely used approach to enable parallelization
of iterative solvers with distance-k dependency; e.g., the red-
black Gauss-Seidel algorithm solves the distance-1 depen-
dency problem. However, most of those standard solutions
suffer from low performance on modern hardware, are highly
problem specific, or require tailored sparse matrix storage
formats.

RACE addresses these shortcomings by combining ideas
from graph traversal and multi-coloring to ensure data lo-
cality, to generate appropriate levels of parallelism, and to
enable hardware-efficient parallelization schemes. It is appli-
cable to many problems (i.e., matrix structures) and general
sparse data storage formats.

Outline

The paper is structured as follows. Section 2 describes the un-
derlying dependency problems and conventional solutions.
Section 3 demonstrates the major drawbacks of the existing
approaches. We then introduce the RACE method in Sec-
tion 4, its uniqueness and how its basic design addresses the
existing problems. In Section 5 we compare RACE perfor-
mance for thread-level parallelization of symmetric sparse
matrix-vector multiplication (SymmSpMV) to available stan-
dard solutions including Intel MKL. Finally we use RACE
to parallelize a sparse eigenvalue solver provided by Intel
MKL and demonstrate RACE’s superiority in terms of per-
formance and attainable problem sizes.

2 Background & Related Work

Data dependencies often prevent a straightforward paral-
lelization of sparse linear algebra kernels. As a representa-
tive and highly relevant example for a distance-2 dependency
problem, we use symmetric sparse matrix-vector multiplica-
tion (SymmSpMYV). Algorithm 1 shows the pseudo-code of
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the basic SymmSpMYV kernel for upper triangular matrices
stored in Compressed Row Storage (CRS) [7] format. The
kernel exploits the symmetry of the matrix (A;; = A;;) to re-
duce storage size and overall memory traffic, which is known
to be pivotal hardware bottleneck for this operation on all
modern compute devices. However, SymmSpMV cannot be
parallelized easily as different threads working on different
rows in parallel could potentially write to the same element
b[col[idx]], causing write conflicts. In terms of graph the-
ory this means a vertex (row in a matrix) and its distance-2
neighbors [9] cannot be operated on in parallel. Here we con-
centrate on such distance-2 dependency problems, although
the underlying method and library is capable of handling
the general case of distance-k dependencies as well.

A popular approach to solve the above problem is multi-
coloring (MC). The earliest work on coloring is the red-black
Gauss-Seidel scheme [6], which was applied to matrices with
a known regular sparsity pattern. Later multi-coloring tech-
niques were expanded using graph theory for general sparse
matrices [10, 15]. Recent variants like algebraic block multi-
coloring (ABMC) [14] tried to improve the performance of
MC methods. In [8], MC was applied to the Kaczmarz itera-
tive solver [16], which has the same distance-2 dependency
as SymmSpMV. Specifically for SymmSpMYV there has been
no previous attempt to use multi-coloring techniques. Gen-
eral solutions for SymmSpMYV are lock-based methods and
thread-private target arrays [5, 11]. Depending on the matrix
structure these solutions can lead to performance degrada-
tion due to serialization and massive increase in data traffic.
Recent research in this direction uses specialized storage
formats like CSB [2] or RSB [20], but this requires rewriting
of existing code and substantial tuning efforts.

3 Uniqueness of the Approach

Multi-coloring methods can extract parallelism for kernels
with data dependencies like SymmSpMV. For distance-2 col-
oring of a matrix, MC groups rows that do not overlap in

Algorithm 1 SymmSpMYV kernel, b = Ax, in CRS format.

//Loop over all matrix rows
1: for row =1 : nrows do
2: diag_idx = rowPtr[row]
3: blrow]+ = Aldiag_idx] * x[row]
//Loop over all non-zero entries in a row

4: for idx = rowPtr[row] + 1 : rowPtr[row + 1] do
: b[row]+ = Alidx] * x[col[idx]]
6: blcol[idx]]+ = Alidx] * x[row]
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(a) Original ordering (b) After MC applied

Figure 1. Illustration of data locality degradation due to MC.
Numbers represent thread id. Note that this figure shows
only rows of matrix permuted according to MC, but in prac-
tice one would permute both rows and columns.

any column entries [9] (structurally orthogonal rows). These
groups of rows are referred to as colors and parallelization
can be done across the rows of a color (see Figure 1 for a
simple example). However this process comes at the cost
of destroying data locality in the matrix by the required
permutations. In the SymmSpMV example (see algorithm 1)
threads within a color operate on different rows having en-
tirely different col[idx] avoiding write conflicts in b vector.
Note, that within a color (for e.g., red) none of the rows share
same column index. As the matrix is traversed row by row
(see algorithm 1) the original matrix has good data locality
and most of the indirect vector accesses (x[col[idx]] and
b[col[idx]]) correspond to nearby elements that were loaded
in the computation of previous rows. This ensures these vec-
tors needs to be loaded only once from main memory, and
the rest of the accesses are served by fast caches. However
coloring the matrix destroys this data locality. For example
in Figure 1b computing all the red colored rows leads to
loading the entire vector completely. If the cache holds only
six elements, computation on green and blue rows require
loading almost the entire vector again from the slow main
memory.

Destroying data locality along with secondary effects like
synchronization costs and false sharing may, thus lead to
severe performance degradation for MC methods. We demon-
strate the impacts on performance and data transfer volumes
for the SymmSpMV computations in Figure 2 for a single
10-core Intel Ivy Bridge EP (E5-2660 v2) CPU clocked at
2.2 GHz. The experiment was done on a large (number of
rows = 10400600) Spin-26 [24] matrix taken from quantum
physics application. We find that performance of MC meth-
ods scale decently within a socket but are far off the RACE
performance which saturates main memory bandwidth at
6-7 cores ( Figure 2a ). The reason for the large performance
difference is given in Figure 2b which shows the average
main memory data traffic per non-zero of the general matrix
during SymmSpMYV execution. It can be clearly seen that
the memory traffic is almost 4Xx higher for the MC method
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compared to ideal traffic (red line) predicted by an appro-
priate performance model'. The extra data traffic is mainly
due to the low data locality and thereby incurred extra ac-
cesses of the indirectly accessed vectors. Algebraic block
multi-coloring (ABMC) tries to reduce the memory traffic by
first partitioning the matrix into blocks and then applying
coloring. This improves (reduces) the data traffic compared
to MC but is still far from optimal in this case.

As main memory bandwidth is the main bottleneck on
modern compute devices, this extra traffic reflects directly on
the performance. This is seen in Figure 2a, where the perfor-
mance is shown in giga floating point operations in seconds
(GF/s). The ideal performance as predicted by performance
model is ~ 7.6 GF/s (not shown in figure) for this matrix, but
MC and ABMC are well below this limit. However our RACE
method closely approaches the ideal values both for the data
traffic and performance and provides a speed-up of almost
4x compared to other methods.

4 RACE Method

RACE was designed with the shortcomings of coloring ap-
proaches in mind. The idea is to have a general hardware-
friendly approach applicable even for simple matrix storage
formats like CRS. The RACE method consists of three steps:
(1) level construction, (2) distance-k coloring, and (3) load
balancing. Depending on the matrix and hardware the steps
are applied recursively if required. To illustrate the method
we choose a simple matrix which is associated with an ar-
tificially constructed two-dimensional-seven-point (2d-7pt)
stencil. Figure 3a shows the corresponding graph and the

ISee Section 5 for more details on modeling.
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Figure 2. (a) Performance of SymmSpMV with MC and
ABMC compared to RACE. (b) Average main memory data
traffic in bytes (B) per nonzero entry (Ny,,) of the full matrix
as measured with LIKWID tool [26]. The ideal data traffic as
predicted by performance model is shown for reference.
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Figure 3. (a) Original graph of the 2d-7pt example, domain
size 8 X 8. (b) Graph after permutation according to levels.
The level numbers are denoted on the superscript of the
vertices. Figures in inset show the corresponding sparsity
pattern of the matrix. (c) level_ptr

sparsity pattern (see inset) of the matrix. In this paper we re-
strict ourselves to matrices representing strongly connected
undirected graphs.

4.1 Level Construction

In the first step we determine the levels of a graph and
permute the data structure accordingly. Here, we use well-
known bandwidth reduction algorithms like Reverse Cuthill
McKee (RCM)[3] or Breadth-first search (BFS)[19]. Although
RCM is implemented in RACE, in the following we apply
BES reordering for better illustration. We start with choosing
a root vertex and assign it to the first level (L(0)). The next
levels L(i) are defined to contain all vertices that are directly
related to the previous level L(i — 1) but are not in L(i — 2).
This implies that the i-th level consists of all vertices that
have a minimum distance of i from the root node. In Figure 3
the level numbers (i) are denoted in the superscript of the
vertices.

After the levels are determined we permute (reorder) the
matrix (and graph) according to the levels such that the
vertices in L(i) appear before L(i + 1). Figure 3b shows the
graph and matrix after applying the permutation. Note that
the vertex numbering in the permuted graph has changed
compared to the original lexicographically ordered matrix. It
is well known that such a permutation improves data locality,
and it was previously applied to sparse matrix computations
without dependencies [21].

In order to resolve dependencies, RACE additionally keeps
information about the levels by storing the index of the first
vertex corresponding to each level in a data structure called
level_ptr (see Figure 3c).

4.2 Distance-k Coloring

The distance-k coloring step uses the information of the
level_ptr to resolve dependencies. Two vertices are called
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(a) distance-1 coloring (b) distance-2 coloring
Figure 4. Example of distance-1 and distance-2 coloring of
the matrix shown in Figure 3

distance-k neighbors if the shortest path connecting them
consists of at most k edges [9]. This implies two vertices
are distance-k independent if they are not distance-k neigh-
bors. Based on this definition it can be proven that vertices
between levels L(i) and L(i + (k + j)) are distance-k indepen-
dent Vj > 1. The levels that satisfy this criterion are called
distance-k independent levels.

The above approach allows for many choices to form
distance-k independent levels. Figure 4 shows one such pos-
sibility for distance-1 and distance-2 coloring each. As L(i)
and L(i + 2) are distance-1 independent, the distance-1 col-
oring assigns two colors to alternating levels. In case of
distance-2 we group two adjacent levels and apply distance-1
coloring to the groups. These groups of levels are called
level-groups and the i — th level-group is denoted as T(i)
(see Figure 4b). For distance-1 coloring shown in Figure 4a
the levels and level-groups coincide (L(i) = T(i)). In both
cases all the vertices between level-groups of same color
are distance-1/distance-2 independent and can be executed
in parallel. For example, in case of distance-2, level-groups
T(0),T(2),T(4) and T(6) can be executed by four threads
in parallel. After synchronization the remaining four blue
level-groups can be executed in parallel. Note that within a
level-group/level the vertices are computed serially without
destroying any data locality.

Choosing the same number of levels per level-group may
cause severe load imbalance depending on the matrix. For
example, in Figure 4b level-groups at extreme ends T(0), T(7)
have a relatively low number of vertices (proportional to
computational work) compared to the level-groups in the
middle (T(3), T(4)).

4.3 Load Balancing

RACE applies a load-balancing scheme among the threads
within each color. It generates just the right number of
level-groups as required by the hardware (i.e., the number
of available threads) and then applies a load-balancing al-
gorithm that minimizes the variance among the number



ACM-SRC Grand Finals, 2019, USA

2
0
0
0

O0OA
SIS
AL
A
4%
Y5,
A

gﬂ
S
St
AL

Figure 5. Applying
load balancing for
five threads and
resolving distance-2
dependency  for
the 2d-7pt example
from Figure 3 but
now with domain
size 16 X 16.
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of vertices within level-groups of the same color. To this
end, level-groups containing few vertices grab adjacent lev-
els from neighboring level-groups; overloaded level-groups
shift levels to adjacent level-groups. To maintain distance-k
independence between level-groups of the same color the
algorithm enforces at least k levels per level-group. This
shifting process is applied iteratively until it reaches the min-
imum possible variance or no further moves are possible due
to distance-k coloring.

Figure 5 shows the graph of the 2d-7pt example at size
16 X 16 after load balancing. Here distance-2 coloring and
five threads (i.e., ten level-groups) were the input to the load
balancer. Note that level-groups at extreme ends (e.g., T(0))
have more levels since here each level has fewer vertices,
whereas bigger level-groups (e.g., T(3)) in the middle main-
tain two levels to preserve distance-k coloring.

4.4 Recursion

However, using the steps above the generated parallelism is
limited by the total number of levels, and the load balancing
can be a problem as it gets closer to this limit. To match the
high levels of parallelism of modern compute devices we use
recursion. The formulation of RACE allows to simply select
a level-group (sub-graph) and apply the three steps recur-
sively on this sub-graph to exploit the parallelism within this
level-group. The thread that was originally assigned to the
level-group spawns other parallel threads in a nested man-
ner. The selection of the level-group to be used for recursion
and final load balancing is done by a global load balancing
algorithm.

5 Results & Contribution

We evaluate the performance of RACE by parallelizing the
SymmSpMYV kernel shown in Algorithm 1. This allows a clear
picture of the performance advantage of RACE. Finally, we
use RACE to parallelize an eigenvalue solver, and compare
against standard approaches.

5.1 Analysis of SymmSpMV Performance

Matrix-vector multiplication is frequently used in numerical
algorithms. In many cases, however, the lack of an efficient
and generic SymmSpMYV implementation leads to the full
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(general) matrix being stored and used even if it is symmetric,
which wastes not only CPU cycles but also memory. Modern
HBM (High Bandwidth Memory) technology with its rather
limited memory sizes makes this problem even more severe.

In this section we carry out experiments using a Symm-
SpMV kernel. We choose most of the test matrices from the
public SuiteSparse Matrix Collection [4], that are frequently
used in related publications [20, 22], as well as some from
the quantum physics context in which RACE was developed
[1]. The experiments are run on one Intel Skylake SP Gold
6148 CPU (20 threads) at a fixed clock speed of 2.4 GHz. The
reported performance is purely for the SymmSpMV compu-
tation as in practical applications these kernels are called
multiple times, making other costs (like setup time) negligi-
ble.

To establish a sensible performance baseline we use the
Roofline model (RLM) [27] along the lines of [18] but ad-
justed for the SymmSpMV kernel. Figure 6a shows the per-
formance of RACE on different matrices along with the range
of upper performance bounds based on two saturated mem-
ory bandwidth measurements (RLM-load and RLM-copy). In
almost all cases, RACE attains more than 85% of the possible
maximum. This can be attributed to the good data locality
and minimal data traffic, which we have already demon-
strated in Figure 2b for the Spin-26 matrix.

In Figure 6a we compare against the SymmSpMV imple-
mentation of the latest version of Intel MKL [13], which uses
the Inspector-Executor routines. The comparisons show that
RACE outperforms MKL by a factor of 1.5X on an average.
A simple analysis shows that the performance of the Intel
MKL SymmSpMYV kernel coincides with the matrix-vector
multiplication using the full matrix (SpMV). We can only
speculate (due to it being closed source) that MKL converts
the symmetric matrix to a full matrix internally and then
does a general SpMV operation.

We also compare RACE with two widely used coloring
methods, MC and ABMC. For MC we apply the multi-coloring
scheme generated by the COLPACK [10] library to parallelize
the SymmSpMV kernel. In the ABMC method we first parti-
tion the matrix into blocks using METIS [17] and then apply
coloring via COLPACK. The size of blocks was determined by
a parameter scan (range 4 ... 128, see [14]). Figure 6b shows
the resulting performance data. Overall the MC method is
not competitive, while ABMC delivers modest performance
(85% of RACE) for small matrices. For large matrices, how-
ever, where data locality plays a vital role, ABMC falls sub-
stantially behind RACE as the indirect access to the vectors
impairs temporal and spatial access locality. Overall, RACE
shows an average speedup of 1.6x compared to ABMC, while
in some cases the speedup is as high as 3x.

5.2 FEAST with RACE

FEAST[23] is a modern algorithm to compute inner eigen-
values. It uses contour integration to generate a subspace
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(a) Performance of RACE compared with MKL

(b) Performance of RACE compared to coloring approaches

Figure 6. SymmSpMYV performance of RACE compared to other methods. The Roofline model for SymmSpMYV is shown in
fig. 6a for reference. Note that the matrices are ordered according to increasing number of rows.

(reduced system) containing the eigenvalues, which are then
solved using a classic Rayleigh-Ritz procedure. The solver is
well-suited for very large sparse systems, and is of particular
interest in the field of quantum mechanics. The hot spot of
the algorithm (more than 95%) is a solver for shifted linear
systems (A — ol = b). These systems are, however, highly ill-
conditioned, posing severe convergence problems for most
linear iterative solvers. The standard approach is therefore
to use direct solvers. However, in [8] it has been shown that
the Kaczmarz iterative solver accelerated by a Conjugate
Gradient (CG) method (the so-called CGMN solver [12]) is a
robust alternative to direct solvers. Similar to SymmSpMYV,
the Kaczmarz method has a distance-2 dependency, mak-
ing it difficult to parallelize. In [8], multi-coloring was used
to parallelize the kernel. We have implemented a shared-
memory parallel version of CGMN with RACE for use in
FEAST.

We use the FEAST implementation of Intel MKL, which
by default employs the PARDISO direct solver [25], but its
Reverse Communication Interface (RCI) allows us to plug
our CGMN implementation instead. In the following exper-
iment we find ten inner eigenvalues of a simple discrete
Laplacian matrix to an accuracy of 1078, Figure 7 shows the
measured time and memory footprint of the default MKL ver-
sion (using PARDISO) and the CGMN versions parallelized
using both RACE and ABMC for different matrix sizes. In
line with the observations in Section 5.1, ABMC is a factor of
4x slower than RACE. The time required by the default MKL
with PARDISO is smaller than with CGMN using RACE for
small sizes; however, the gap gets smaller as the size grows
due to the direct solvers having a higher time complexity
(here ~ O(n?), see Figure 7) compared to iterative methods
(= O(n'-®)). Moreover, the direct solver requires more mem-
ory, and the memory requirement grows much faster (see
Figure 7(b)) than with CGMN. In our experiment the direct

solver ran out of the memory at problem sizes beyond 140°,
while CGMN using RACE used less than 10% of space at this
point. Thus, CGMN with RACE can solve much larger prob-
lems compared to direct solvers, which is a major advantage
in fields like quantum physics.

Conclusion

We have shown the parallelization problems that commonly
occur in sparse computations and discussed on the draw-
backs of existing approaches. We then introduced and de-
scribed the RACE method, its novelties and how it mitigates
the shortcomings of existing methods. Finally we have seen
the application of the method in numerical linear algebra for
achieving high performance and solving large problems on
modern compute devices.
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Figure 7. Comparison of FEAST with default Intel MKL
direct solver and iterative solver CGMN, parallelized using
RACE and run on one Skylake SP Platinum 8160 CPU (24
threads).
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