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ABSTRACT 
In this work, a novel decision supporting tool, called Route 

Planning Maker (RPM) is proposed to help governments or 
transportation companies to plan new route services in the city. The 
function of RPM is four-fold. First, RPM illustrates the local 
characteristics (e.g. geo-graphical information or spatial-temporal 
urban informatics) by visualizing multiple aspects of the city for users 
to easily understand the local characteristics of anywhere in the city, 
which is beneficial for proposing new routes. Second, RPM has a 
flexible user interface that allows users to arbitrarily sketch/adjust their 
idea by adding/removing routes and stations when deploying new 
routes. Besides, RPM can also show the existing routes which are 
correlated with the new route to let users check their transference or 
overlapping regions. Third, RPM provides an intelligent function to 
estimate passenger flows (PF) in certain time intervals and acquire 
relevant urban information so that the user can estimate the 
effectiveness of designed routes. According to our experimental 
results, RPM can obtain the passenger flow effectively and efficiently 
for given designated routes. However, in some cases users prefer that 
PRM can directly recommend a route which will have high potential 
PF. Therefore, the last function of RPM is that we proposed 
Bidirectional Prioritized Spanning Tree (BDPST) for route 
recommendation given users’ constraints. By utilizing our proposed 
inference model and BDPST algorithm, RPM can recommend routes 
and stations with high potential PF in a certain extent on map along 
with some must-visit stations assigned by users. We did experiments 
on bus-ticket data of Tainan city and the results show that the inference 
model outperforms baseline and comparative methods from 17% to 
75%. Moreover, we show that the proposed BDPST algorithm’s 
performance is not too far away from the optimal PF and outperforms 
other comparative methods from 9% to 70% in large scale route 
recommendation. 
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1 Problem and Motivation 
Traffic deployment is high-correlated with the quality of life [13]. 

Governments or transportation companies dispose new transportation 
services such as bus or MRT routes to serve residents. For residents, 
new services bring convenience to users and reduce pollution. 
However, constructing unwanted and redundant routes or stations can 
lead to environmental damage and resource waste. Besides, according 

to our interview with civil servants in the bureau of transportation, they 
pointed out that the current procedure in planning new routes turns out 
to be lengthy due to many stakeholders involved in. Also, the 
overwhelming number of requests from public opinions makes it 
difficult to decide where to construct new routes and stations. 

Therefore, we propose a novel tool, called Route Planning Maker 
(RPM), which not only has flexible interface to customize a new route 
efficiently and visually, but also assesses the effectiveness of a new 
route service in advance before deployment. RPM has four main 
functions. The first is visualization of urban characteristics, the second 
refers to the interactive route design, the third is passenger volume 
inference for designed route, and the last is high PF route 
recommendation based on given constraints. More specifically, RPM 
allows users to estimate the passenger volumes of their proposed 
routes, or directly recommends stations and a route with high potential 
PF based on desired must-visit stations in a certain extent. The system 
interface is shown in Figure 1.  

 

 
Figure 1: An overview of the proposed RPM system, including user query 

by clicking on map (up) and inference results (down). 

 

Figure 2: Heat map (left) and scattered point map (right). 
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2 Background and Related Work 
Inferring the passenger volume of a new route is not trivial since 

multiple factors such as human mobility, impacts of existing routes 
and stations, road network structure, point-of-interests (POI) and local 
population structure should be considered. Therefore, we propose 
several strategies to support the third function. First, we believe 
features observed in our proposed route-affecting region (RAR), 
which indicates the influential range of a route, would influence the 
passenger flow (PF) of the route. Second, we exploit Deep Neural 
Network (DNN) to estimate PF by combining heterogeneous features. 
Third, to handle the effects on new routes along with existing ones, we 
propose to train the impacts by considering extended, nearby, and 
overlap segments. To our best knowledge, no existing work deals with 
such research problem. We claim that our proposed RPM system can 
be used in many kinds of urban transportation, such as subway and bus 
routes, and can be utilized in any cities, where ticket data is available 
for the government or transportation companies. 

Related Works. Some works [2][8][9][10][15] in designing new 
transportation route focused on decreasing transportation time through 
route adjustment and shift. There are also some works [6][16] that 
optimized the route planning, in which distance, time, transference and 
passenger flow were considered. On the other hand, some works 
[3][7][11] studied the problem of predicting arrival time for public 
transportation based on regression analysis. Moreover, some 
researches [17][18] focused on the problem of predicting future 
passenger-flow. However, the above works focused on dealing with 
existing routes, which are not our target problem. 

Therefore, by focusing on designing new transportation routes, 
Table 1 first presents a summary of formulations for previous works, 
listing the aspects each research approached. By analyzing the 
considered and extracted features, we generalize six kinds of relevant 
urban features in inferring the passenger flow for new route deployed 
in transportation network, which will be discussed in section 4.1.2. 
Most importantly, none of these works present an interface or a tool 
for users to design their own routes intuitively and interactively. 

3 Overview 
This paper presents a novel assisting system for deploying new 

public transportation system. The proposed system has three phases. 
In the first phase, relevant urban characteristics mined from open data 
are visualized on a map for users to preview the neighboring 
environments. The second phase allows users to design new routes and 
the passenger flow in several time intervals will then be inferred; 
meanwhile, existing routes that can be transferred will be displayed on 
map in the same time. In the third phase, users can query some 
constraints and our system can recommend stations and route. 

System Prototype. The interface overview is shown in Figure 1 
and 2. The system has four functions: (a) Visualization of relevant 
urban features on base map. (b) A base map for users to schedule their 

customized placement of routes and stations, and a control panel that 
allows users to add or delete stations or constrains. (c) The PF and 
relevant information of the route will be inferred and displayed. (d) 
The stations and route will be recommended and displayed. 

A prototype of RPM has been developed and deployed as a web 
application. We use Google Maps for the whole city as the base map. 
The web application can be opened in a standard web browser without 
any additional software or hardware. When using this system, users 
can not only perceive certain regions for different kinds of urban 
characteristics, draw their own route on demand and let the system 
infer the PF of the designated route, but also set constraints for system 
to recommend stations and route. 

3.1  Visualization of Urban Characteristics 
To let users perceive certain regions when deploying new routes or 

stations, the system illustrates the urban characteristics by visualizing 
multiple aspects of the city. Visualized data includes POI information, 
which is crawled regularly from Google Maps in RPM system. The 
categories for POI visualization are arts, education, food, night life, 
outdoors, professional space, shop and service, and transportation spot. 
Other data including violation events, pollution reports, traffic 
accidents, crimes are from open data platform of Tainan City 
Government. The visualization is shown in Figure 2. 

3.2  Route Design and Passenger Flow Inference 
To design their own routes and stations, users can add stations by 

directly clicking on the map or by entering an address. Besides, certain 
stations can be deleted by clicking the corresponding buttons in the list. 
After submitting the designated route, the system will immediately 
infer the PF per day of the route with stations deployed; meanwhile, 
relevant information including PF in different time intervals, statistics 
of POI, population and road network structure of the nearby region are 
also shown in the panel as a complement for designing new route 
services. In addition, users can display existing routes which can be 
transferred to or correlated with the designated route on map. An 
overview of the inference phase is shown in Figure 1 and 3. In the 
section 4.1, we introduce the detail of PF inference. 

 
Figure 3: Inference results, statistics and relevant existing routes. 

3.3  Route Recommendation with Constraints 
Although RPM system can help users estimate PF for any designed 

route, sometime users prefer to obtain a recommended route which 
have high PF value in a certain urban space. Therefore, we design 
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Mauttone & Urquhart (2009)   [8] ▓     ▓  ▓ ▓   ▓ ▓ ▓    

Quadrifoglio & Li (2009)   [10] ▓   ▓       ▓ ▓  ▓    

Szeto & Wu (2011)   [15] ▓ ▓  ▓ ▓   ▓ ▓    ▓ ▓    

Cancela et al. (2015)   [2] ▓   ▓  ▓  ▓ ▓   ▓  ▓    

Pternea et al. (2015)   [9] ▓   ▓    ▓ ▓   ▓  ▓    

Ours ▓  ▓ ▓ ▓ ▓ ▓ ▓  ▓ ▓ ▓ ▓ ▓ ▓ ▓ ▓ 

Table 1: Summary of formulations for researches on designing new transportation routes. 



 
 

 

another function that can recommend stations and route with 
constraints given by users. To start with, users can set range to consider 
by directly clicking the corners of their desired extent on the map. Next, 
users can set some must-visit stations by clicking on map or entering 
addresses. Finally users can set the number of desired stations and 
submitting the request, the system will immediately display the 
recommended route and stations including must-visit ones and 
recommended ones. In the section 4.2, we introduce the detail of 
methodology. 

4 Approach and Uniqueness 
The methodology for this work is composed of two parts, the PF 

inference, and route recommendation, which utilizes the result of the 
former part. Meanwhile, the evaluation results for these proposed 
approaches are introduced in section 5.1 and 5.2 separately. 

4.1  PF Inference  
Problem Definition. Given a set of trajectories for the designated 

route with its stations labeled from users, our goal is to infer the 
passenger flow PF(litj)  for each route li in certain time intervals tj. In 
other words, we devise RPM for users to plan their own routes and 
stations. Then, the system derives the passenger flow of the user-
designated trajectory and stations in a certain time interval. 

 
Figure 4: PF inference procedure in RPM. 

The framework of PF inference in RPM is shown in Figure 4, 
which mainly consists of three components. In data preprocessing, we 
divide the city into disjointed grids (e.g., 0.1km × 0.1km) [12], and all 
features are fetched and stored in grids for further extraction. The 
second component is training models. The feature set for each existing 
route is extracted and integrated as the training data along with its 
corresponding ticket data, which is associated with timestamp and PF 
for each route. We treat various features as inputs and PF as the 
predictive label. We tried several machine learning methods as training 
models, and the DNN for regression gets the most promising result in 
our evaluation. In the third component, the pre-trained model is 
utilized for the query route given by user to infer PF value. 

4.1.1 Route-Affecting Region 
The demand for public transportation is not only based on the 

origin and destination, but also the nearby geographical environment 
and urban functions of nearby areas. Thus, we propose RAR for 
considering passenger-flow related features. A route can comprise 

multiple segments that contain successive points close to each other. 
Then we can draw a circle for each point, where we consider each point 
as the center of a circle, and then RAR formed by a set of circles. Based 
on Design Manual for Urban Sidewalks [14], the tolerance walking 
distance for pedestrian is 400 to 800 meters; therefore, the green area 
in Figure 5 is an example of RAR of the given route qs to qd, with a 
radius of 0.4km. Then we can extract the corresponding features 
correlated with passenger flow within RAR. 

 
Figure 5: A RAR example of a user-designated route 

4.1.2 Feature Extraction Based on RAR 
To infer the PF value of the trajectory correctly, we consider six 

kinds of relevant urban features in RAR: 
(1) POI-Related Features 

Various POIs (specific point location such as transportation hubs 
or entertainment venues) and their density in RAR indicate the 
function of a region, which might have high correlation to the PF of a 
route. For example, a high PF might be associated with route to many 
shopping centers. We consider two aspects of POI features as follows: 

POI Density. The density of POI indicates the popularity of a 
certain activity type in RAR. As the example mentioned above, a high 
density of certain types of POI such as shopping centers and schools 
can result in high PF value. 

POI Entropy. The POI entropy in RAR shows the diversity of 
purpose for people to visit the nearby area of a route. The entropy for 
trajectory li is based on Information Theory [4]: 

Entropy(li)ൌ െ ∑ ቀ
ேംሺ௟೔,௥ሻ

ேሺ௟೔,௥ሻ
ൈ log

ேംሺ௟೔,௥ሻ

ேሺ௟೔,௥ሻ
ቁି

ఊ∈௰          (1) 

Where Γ indicates the set of POI, and γ refers to certain type of POI. 
Besides, N (li, r) displays the total number of POI in RAR of trajectory 
li based on radius r, Nγ (li, r) displays the number of type-γ POI in 
RAR of trajectory li relatively. 
(2) Human Mobility 

Human mobility is extracted from ticket data in three ways: 
transition density, incoming flow, and leaving flow. The transition 
density indicates the ratio of transitions occurred in the same RAR. 
The incoming flow shows the total records entering the RAR; on the 
contrary, the leaving flow displays the total records exiting the RAR. 
(3) Road Network Structure 

Road network structure, including degree and closeness centrality, 
is considered since it might be correlated with real traffic conditions. 
We extract network structures from OpenStreetMap (OSM), where 
degree centrality identifies the total number of reachable vertexes for 
all intersections in RAR, and closeness centrality shows the average 
distance between one intersection to another in RAR. 
(4) Competition and Transference with Existing Routes 

Two routes might cause a competitive relationship if their RAR is 
similar. However, intersected routes with considerable extended 
segments would encourage passengers to transfer between them. 
Therefore, we seek intersections between designated routes and 
existing routes, and then calculate the extended, nearby, and overlap 
grids each transferable existing route holds, as shown in Figure 6, then 
finally sum up each type of grids as features. 



 .
 

 

 

 
Figure 6: Procedure of dealing with existing routes.  

(5) Population Structure 
People in RAR of different ages and genders can have different 

intentions for taking public transportation. Consequently, we extract 
the population data of the target city, and then the population for each 
age group and gender are normalized as features to be considered. In 
this work, we crawled population-related data of Tainan City from 
Ministry of Interior’s (MOI, Taiwan) open data platform. 
(6) Time Information and Granularity 

Seasons and holidays can influence the passenger flow of public 
transportation. We adopt one-hot encoding to record the time 
information for each ticket record. 

4.1.3 Inference Model Construction 
We adopt and modify multiple machine learning methods including 

SVR, Linear Regression, XGBoost, and DNN for Regression, to 
derive the PF for the designated route respectively. The input data 
includes all the features extracted based on the RAR of the user-
designated route, including POI-related properties, human mobility, 
road network structure, correlations of existing routes, population 
structure, and time information. As it turns out, the output is the 
inferred PF value of the user-designated route. 

4.2  High PF Route Recommendation  
Problem Definition. Given a set of must-visit stations SM = 

{SM0,…,SMi} and extent along with constraints including the number of 
recommended stations r, our goal is to recommend a trajectory in the 
given extent along with a set of stations S=SM+SR to maximizes the 
inferenced PF per unit length for the route (combination of trajectory 
and stations), where SM refers to the set of must-visit stations, and SR 
is the recommended stations {SR0,…,SRr}. 

The optimal solution is quite difficult to obtain in large urban 
space since there are too many combinations of route segments and 
stations for forming a route. According to our experiments, some 
exhaustion-based methods are not feasible due to high execution time. 
Therefore, we proposed Bidirectional Prioritized Spanning Tree to 
help retrieve a not bad solution using reasonable time. The pseudo 
code for the proposed BDPST Algorithm for stations and route 
recommendation is shown in Figure 8, which consists of three parts. 
First, it calculates the PF of each must-visit grid utilizing the inference 
model proposed in section 4.2; then evaluates its spreading impact on 
other grids in the extent based on Gaussian function in two dimensions. 
Second, based on the negative Gaussian feedback of inference PF from 
must-visit and selected stations, scores for all grids are derived and we 
greedily select the grid with maximal PF as the recommended station. 

 
Figure 7: Schematic search space of Dijkstra’s algorithm (left), 

bidirectional search (middle), and BDPST algorithm (right). 

Algorithm BDPST
input: must‐visit	grids (stations) in map extent with road	network, and 
number	of	recommended	stations	
output: route with starter as stations such that it has a unit-length PF 
approximating optimal solution

foreach grid in extent do
      let	pf(grid)	be	the	PF	of	grid	
      if grid is	in must_visit_grids then 
            foreach g in extent do 
                  let	G(g,	grid)	be	Gaussian	function	in	2	dimension	
                  gd(g, grid) ← G(g, grid)×pf(grid) 
                 tgd(g) ← tgd(g)+gd(g, grid)	
foreach j from 0 to number_of_recommendation do
      max(j) ← 0 
      choice ← null 
      foreach g in extent do 

                   if g is	not	in (must_visit_grids + recommended_grids) then 
                  if pf(g)–tgd(g)>max(j) then 
                        max(j) ← pf(g)–tgd(g) 
                        choice ← g 
      add	choice	to	recommended_grids	
      foreach g in extent do 
            let	G(g,	choice)	be	Gaussian	function	in	2	dimension	
            gd(g, choice) ← G(g, choice)×pf(choice) 
           tgd(g) ← tgd(g)+gd(g, choice) 
starter ← must_visit_grids + recommended_grids 
foreach grid in extent do 
      sid(grid) ← -1 
      if grid is	in starter then 
            root[starter_id] ← grid 
            set[starter_id, 0].add(root[starter_id]) 
            sid(grid) ← starter_id 
            count(starter_id) ← 0 
            foreach g in extent do 
                  tgd[starter_id,0](g) ← tgd(g)–2×gd(g, grid) 
route ← null 
foreach i from 0 to infinite do 
      foreach s in starter do	
            foreach st in set[s, i] do	
                  if count(s)≥2 then 
                        break 
                  nst ← st /*deep copy*/ 
                  pt(nst, s) ← 0 
                  max(st) ← 0 
                  choice ← null 
                  foreach g in nearby_grid do 
                        if reachable	in	road	network and sid(g)≠s then 
                              if tgd[s, i](g)>max(st) then 
                                    max(st) ← tgd[s, i](g) 
                                    choice ← g 
                  if choice≠null then 
                        nst.visit(choice) 
                        if sid(g)≠-1 and count(sid(g))<2 then 
                              route.addseg(nst, obj(g)) 
                              count(s) ← count(s)+1 
                              count(sid(g)) ← count(sid(g))+1 
                              if success	to	form	a	route	with	all	starters then 
                                    break	
                              foreach g in extent do 

                                           tgd[s, i](g) ← tgd[s, i](g)–2×gd(g, root[sid(g)]) 
                              if count(sid(g))=2 /*same for count(s)=2*/ then  
                                    foreach st in starter do 
                                          foreach g in extent do 

                                                       tgd[st, i](g) ← tgd[st, i](g)–2×gd(g, root[sid(g)])
                        else	
                              set[s, i+1].add(nst) 
                              sid(g) ← s 
                              obj(g) ← nst 
                  pt(st, s) ← pt(st, s)+1 
                  if pt(st, s)>1 then 
                        set[s, i].delete(st) 
            set[s, i+1].add(set[s, i]) 
            tgd[s, i+1] ← tgd[s, i] 
      if success	to	form	a	route	with	all	starters then 
            break	
return route and starter

Figure 8: Pseudo code for the proposed BDPST algorithm. 



 
 

 

The standard solution for one-to-all path problem is Dijkstra’s 
algorithm [5], which updates values by superimposing connections 
iteratively. However, the features in our model including entropy and 
relationship with existing routes are not superimposable, which makes 
Dijkstra’s algorithm or other route planning algorithm in 
transportation network inappropriate for our case [1]. Therefore, based 
on the idea of bidirectional search and depth-first spanning tree, we 
propose the Bidirectional Prioritized Spanning Tree. In the third 
component, BDPST minimizes depth of search by performing multi-
bidirectional search and prunes breadth of search space on the basis of 
spreading impact of positive Gaussian feedback from other stations, 
which makes it act as a breadth-first-based target-prioritized spanning 
tree growing from multiple stations(starters) simultaneously. 

We compare the schematic search space of Dijkstra’s algorithm, 
bidirectional search, and our BDPST algorithm in Figure 7. As there 
is provably an intersection of both search spaces, bidirectional search 
visits roughly half as many grids as Dijkstra’s algorithm. Moreover, 
BDPST visits fewer grids than bidirectional as the target-prioritized 
approach restricts the breadth based on the tendency to other targets.  

5 Evaluation 
Dataset. For both parts, we use bus-ticket data from Tainan City 

Government, which dataset contains 14,336,226 ticket records. The 
city bus system holds 104 routes and 6,575 stations; meanwhile, each 
ticket record lists route and timestamps, starting and ending station. 

5.1  PF Inference 
In this section, we hold two kinds of experimental scenarios. The 

first one queries only one route (trajectory-based), and the second one 
is a route with deployed locations (station-based). We developed four 
comparative methods: (a) Support Vector Regression, (b) Linear 
Regression, (c) XGBoost, and (d) DNN for Regression, along with two 
baseline methods: (e) Median value and (f) Average value using the 
median and average value of PF in all training routes respectively. 

The evaluation is based on the leave-one-out method. In the 
trajectory-based scenario, for instance, we leave one route PF data out 
of the complete data, and then use the rest of data to train the model 
and infer the value of the left out route based on the features extracted 
from RAR of the route. Then we compare the inference value with the 
ground-truth, which is the total number of passengers that had taken 
the route. Thereafter, we leave the next PF and use the remaining data 
to train and infer again until each PF is inferred and compared with its 
ground-truth. Finally, we retrieve the normalized root-mean-square 
error. Accordingly, performance result is shown in Figure 9, where 
DNN for Regression gains the best normalized RMSE and outperforms 
other comparative methods for at least 75% in station-based scenarios 
and 17% in trajectory-based situations. 

 
Figure 9: Normalized RMSE of PF results for different methods. 

5.2  Route Recommendation 
In this section, we developed five comparative methods: (a) 

Bidirectional-Spanning-Tree(BDST) uses multi-bidirectional concept 
based on BFS. (b) Breadth-First-Spanning-Tree(BFST) recommends 
stations on grid PF with negative Gaussian feedback and runs BFS 
station by station. (c) Mixture-Depth-First-Spanning-Tree(MDFST) 

recommends stations based on inferenced PF with negative Gaussian 
feedback and runs DFS station by station. (d) Gaussian-Depth-First-
Spanning-Tree(GDFST) recommends stations based on negative 
Gaussian feedback and runs DFS station by station. (e) Random-
Depth-First-Spanning-Tree(RDFST) runs DFS station by station. The 
baseline method: (f) Brute-Force (BF) systematically enumerates all 
possible combinations for solution and retrieves the optimal one. 

The evaluation is based on the average PF per unit length and 
executing time. All methods run 1,000 randomly generated testing 
cases for extent range from 0.25 km2 to 25 km2 on same conditions. 
The results are shown in Figure 10, where PF per unit length for each 
method is divided by the value of BDPST algorithm into a unit PF 
ratio; Meanwhile, for methods that cannot finish in an average 
executing time of 10,000 seconds, its unit PF ratio would not be 
displayed. Accordingly, our proposed BDPST algorithm outperform 
other comparative methods from 9% to 70% in large scale (e.g. >9 
km2) case and not far away from optimal solutions in small space. 
Besides, Brute-Force can ensure to obtain optimal solutions but is only 
feasible for very small ranges (<1 km2). 

    
Figure 10: Unit PF% and executing time for different methods. 

6 Conclusion 
This work proposes an intelligent and interactive system called 

RPM to let users design novel routes and infer the passenger flows 
based on routing and ticket data. No existing work addresses the 
problem. Given heterogeneous features and faced with the competitive 
and transfer effects of existing routes, our proposed RAR and feature 
engineering methods are effective for handling dynamic and static data. 
The experiments on Tainan City bus-ticket data show that our 
proposed PF inference model and BDPST algorithm outperform 
baseline and comparative methods. Moreover, the proposed BDPST 
algorithm is feasible for real-time large scale route recommendation. 
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