SIGCSE: G: Empirical Assessment of Software Documentation
Strategies: A Randomized Controlled Trial

Scott Kolodziej
Texas A&M University
College Station, Texas

scottk@tamu.edu

ABSTRACT

Source code documentation is an important part of teaching stu-
dents how to be effective programmers. But what evidence do we
have to support what good documentation looks like? This study
utilizes a randomized controlled trial to experimentally compare
several different types of documentation, including traditional com-
ments, self-documenting naming, and an automatic documentation
generator. The results of this experiment show that the relationship
between documentation and source code understanding is more
complex than simply "more is better," and poorly documented code
may even lead to a more correct understanding of the source code.

CCS CONCEPTS

» General and reference — Empirical studies; « Software and
its engineering — Documentation; Software development tech-
niques; Automatic programming;

KEYWORDS

Software documentation, empirical study, randomized controlled
trial, automatic documentation generation, self-documenting code

ACM Reference Format:

Scott Kolodziej. 2019. SIGCSE: G: Empirical Assessment of Software Doc-
umentation Strategies: A Randomized Controlled Trial. In Proceedings of
ACM Student Research Competition Grand Finals. ACM, New York, NY, USA,
5 pages.

1 PROBLEM AND MOTIVATION

When discussing source code documentation, a question invariably
arises: What does good documentation look like? High-quality
comments and good variable names are standard recommendations,
but what experimental evidence exists to support this standard?

Historically, technical limitations in programming languages
such as line length limits have restricted the amount and type of in-
source documentation available. However, as these limitations have
been removed, the available options for documentation have rapidly
increased and diversified. Coding standards frequently describe how
source code should be documented [2, 5-7], and popular reference
books provide detailed arguments for and against certain forms of
documentation [9, 10].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM Student Research Competition Grand Finals, 2019,

© 2019 Copyright held by the owner/author(s).

Anecdote, case studies, and thought experiments are often pro-
vided as evidence in these standards and references, and recent ad-
vances in data mining source code repositories can provide hints to
good programming practices. However, well-designed experiments
may provide significant insight and further test these hypotheses
and practices [3, 19]. This randomized controlled trial compares
several different documentation styles under laboratory conditions
to determine their effect on a programmer’s ability to understand
what a program does.

2 BACKGROUND AND RELATED WORK

Several previous studies have examined the effects of software
documentation on program comprehension, but few have focused
specifically on source code comments and variable names rather
than external documentation formats. Fewer still can be classified
as controlled experiments [15]. One experiment by Sheppard et al.
found that descriptive variable names had no statistically signifi-
cant impact on the ability of a programmer to recreate functionally
equivalent code from memory [14]. However, the same study com-
mented that as participants wrote their functionally equivalent
code, they generally used meaningful variable names, even when
rewriting source code that had less meaningful names.

Another study by Woodfield et al. demonstrated the efficacy of
comments when interpreting source code written in Fortran 77
[22], with similar studies conducted by Tenny using PL/1 [18] and
Takang et al. using Modula 2 [17] showing similar trends. While
these studies lend strong evidence to the claim that comments
improve comprehension of source code, their validity may not be
generalizable to today’s modern programming languages.

More recently, Endrikat et al. conducted a controlled experiment
to study the effect of static typing and external (i.e. not in-source)
documentation of an existing API had on development time [4].
While the beneficial effect of static typing over dynamic typing was
statistically significant and substantial, the effect of additional API
documentation was not statistically significant. A similar study on
software maintenance by Tryggeseth showed that external docu-
mentation of a large codebase with no existing comments decreased
the time programmers took to modify the system by 21.5%, sup-
porting the efficacy of external documentation in the absence of
comments [20].

Developers tend to be more willing to change code than to change
accompanying comments, which can lead to misleading documen-
tation and future bugs [8]. This may imply that self-documenting
code is a better documentation strategy than comments alone. An
observational study based on open-source software repositories
indicated that more verbose comments may result in more change-
prone code, again challenging the efficacy of comments [1].

ACM Student Research Competition Grand Finals, 2019,

Automatic documentation generation is a recent development
that uses machine learning to document code based on established
examples of well-documented code [16]. The resulting documen-
tation often uses a mixture of variable renaming and additional
comments. One such generator, JSNice, uses this approach to gen-
erate documentation for source code written in JavaScript [12].

In this work, we compare the effect of comments, self-documenting

naming, and automatic documentation generation in a modern pro-
gramming language (C++). Specifically, we measure the effects
of these documentation styles on programmer response time and
accuracy when determining what a short code snippet does. Addi-
tionally, this study is an instance of a randomized controlled trial,
meaning that the experimental categories are randomly assigned to
avoid bias and a control category (representing no documentation)
is present.

3 APPROACH AND UNIQUENESS

In this experiment, three forms of documentation were compared:

e Commenting, non-functioning descriptive text in the source
code (see Listing 1).

o Self-documenting naming, descriptively naming variables and
functions to imply further documentation unnecessary (see
Listing 2).

o Automatic generation, using a machine learning-based tool to
generate both comments and descriptive names (see Listing
3).

1 // Sum all elements in the array a

> double s = 0;

3 int n = a.size(); // length of the array
¢ for (int i = @; i < n; i++) {

s += al[il;

o)

s // Compute the arithmetic mean
double x = s / n;

Listing 1: Example of Commented Code

1 double arraySum Q;

> int numElements array.size();

; for (int index = @; index < numElements; index++) {
arraySum += arrayl[index];

50}

double mean = arraySum / numElements;

Listing 2: Example of Self-Documenting Code

1 /** Q@type {number} =*/
> double s = 0;

3 int sl = a.size();

+ /*% @type {number} %/
5 int 1 = 0;

6 for (; 1 < sl; i++) {
7 s = s + al[il;

& 3

9 /**% @type {number} =*/
10 double vl = s / sl;

Listing 3: Example of Generated Documentation

Because commenting and self-documenting naming are not mutu-
ally exclusive, five experimental categories were created:

Scott Kolodziej

(A) No comments with poor naming. This category served as the
control. No comments were provided, and all variable and
function names were random alphabetic characters.

(B) No comments with self-documenting naming. No comments
were provided, but variables and functions were descriptively
named.

(C) Descriptive comments with poor naming. Comments were
included in the source code, but variables and functions
were named with random alphabetic characters.

(D) Descriptive comments with self-documenting naming. Both
comments and descriptive names were included, otherwise
referred to as full documentation.

(E) Automatic generation. Comments and names generated using
JSNice.

3.1 Experimental Design and Methods

Five code snippets, ranging between 23 and 96 lines of code, were
written in C++ and documented in each of the five styles. The snip-
pets were created with the goal of being representative samples
of software source code, with each snippet including 1-2 concepts
selected from object-oriented programming, algorithms, data struc-
tures, and recursion.

As no C++-based documentation generator currently exists, the
JavaScript-based JSNice was used [12]. Thus, the code snippets were
translated from C++ to equivalent JavaScript, stripped of all forms
of documentation, submitted to JSNice, and the resulting source
code was translated back to C++.

Twenty undergraduate students majoring in computer science
or computer engineering were recruited who had completed an in-
troductory course in C++. After informed consent, each participant
was given a brief demographic survey (to account for programming
experience and year in major), a practice question to familiarize
themselves with the user interface, and a test to assess their under-
standing of the documented code snippets. Participants were asked
to respond to three multiple-choice or fill-in-the-blank questions
per snippet, with the code still visible.

To avoid experimental bias, the test contained all five code snip-
pets in a randomized order and randomized documentation style
such that each participant was presented with all five snippets and
all five documentation styles. This allowed each participant to serve
as their own control. This randomization was accomplished using
a 5 x 5 Latin square experimental design (see Figure 1).

The experiment was conducted under controlled conditions with
privacy dividers and no outside assistance. Pen and paper was
provided for all participants, and the test was administered on a
laptop with a wireless mouse. While no time limit was imposed, all
participants completed the experiment within one hour.

4 RESULTS AND CONTRIBUTIONS

The results of the experiment demonstrate that several trade-offs
may exist in choosing the most effective documentation strategy.
Figure 2 shows the effect of the different documentation types on
the response time of the participant, while Figure 3 shows the effect
of the documentation types on the correctness of the participant’s
response. Generally, the addition of comments or self-documenting
naming decreases response time compared to the control group,

SIGCSE: G: Empirical Assessment of Software Documentation Strategies

Participant Number

123 4 5|6 7 8 910

» EEER = ~ ~ -

C2 E2 B2 D2 A2 D1 E1 B1 Ci1

Documentation Style D

Full Comments/Naming

E3 D3 B3 [C3

B-GEE- - =B
o crea o [

Figure 1: Latin Square Experimental Design. Four 5 X 5 Latin
squares (two shown) were used to randomize the assignment of
documentation/snippet permutations to participants. Each partici-
pant was presented with one of each of the five snippets, and one
of each of the five documentation styles. The order of the snippets

Code Snippet and
Combination

Documentation

Code Snippet 4

Circular Queue

was randomized every five participants.

o :
S :
[>] * .

. X

o o ! T |

£ 31 : : . :

i: o : [4:* 1 [

g . ! . !

c o '

S O !

o

Q

a4
o) T
S | ; ; '
N : ! | .

&) 5 9
PO & (&o"o S © ((;\o% PO
S S (“& & &(O ST L
\\OQ S 00000 \Qo 0‘6 E QY\C:“Q
¢ o) OV oo S
QY G O g ®

Figure 2: Effect of Documentation Style on Response Time.
Raw data box plots showing median, interquartile range, and out-
liers of the response times for each documentation style.

but also decreases response accuracy. Automatically generated doc-
umentation yields results similar to no documentation at all.

4.1 Statistical Analyses

Additional statistical analysis using generalized linear models al-
lowed us to control for several factors:

e Code snippet. Our analysis controlled for certain snippets
being inherently more or less difficult to understand.

o Participant. We controlled for variability in each participant’s
inherent ability, including their average response time and
accuracy.

o Time. When analyzing response accuracy, responses were
binned into two minute intervals, allowing us to consider
correctness given an approximately constant response time.

ACM Student Research Competition Grand Finals, 2019,

e
£ 2
(5] -
a2 ! !
o C ' i
=< I '
3> ' .
>, i [l
asg | |
£ 11 — . . —
o ' '
Q | |
0oL« B
Yo SE Lo o &6
&6\({‘\0\ & G > © 6.‘\0 eg,b& &0@ q’r.“\o
2 <
LS oQo NPT &9 e

Figure 3: Effect of Documentation Style on Response Accuracy.
Raw data box plots showing median, interquartile range, and outliers
of the response accuracy for each documentation style.

o Accuracy. When analyzing response time, responses were
binned by the number of questions correctly answered, allow-
ing us to consider response time given a constant response
accuracy.

o Snippet and Documentation Style Ordering. While these fac-
tors were thoroughly randomized, we also determined that
there were no substantial learning effects or attrition over
the duration of the test.

To determine which documentation styles are statistically differ-
ent from one another, we used Tukey’s honest significant difference
(HSD) test to compare all pairs of means [21]. For the response time
model, we applied a square root transformation to response time,
as residual variability increased at higher values of time (i.e. most
participants finished in approximately the same amount of time, but
a sizable fraction took significantly longer to complete the test). For
the response accuracy model, we used a generalized linear model
with a binomial link function to account for the discrete response
variable (correct or incorrect for each question). These results are
reported as an odds ratio, e.g. documentation style A has 1.3 times
higher odds of eliciting a correct response than documentation
style B. A threshold of @ = 0.05 was used for determining statistical
significance.

As the documentation styles form two orthogonal factors when
neglecting the automatic generation case, the categories can be
grouped as follows:

o All cases without comments (A U B) against all cases with
comments (C UD).

o All cases without self-documenting naming (A U C) against
all cases with self-documenting naming (B U D).

This grouping allows us to increase our statistical power, as we
are only comparing two cases with approximately twice as many
data points in each category.

An additional analysis was used to determine which documen-
tation styles are statistically indistinguishable, in contrast to the
previous analyses to determine which documentation styles are

ACM Student Research Competition Grand Finals, 2019,

95%

Documentation Confidence Approx.
Category Pair AVt Interval At p-value

A-B 143 [-1.29, 4.16] 50s 0.582
........... R O P o R T
R R Sy [052,583]1175 0011
........... A—E014[—251280]551000
........... B—COGS[—207338]2230962
........... B L0 A3 ess 0576
g 129[—140,398] P ees
........... C—D109[—157374]38SO781
........... E—Cl94[—071460]6930253
R B 55 [041,565] T PP
(AUB)-(CUD) 0.22 [1.54,0.15] 7s 0.987
(AUC)—(BUD) S [143’222] e s

Table 1: Statistics for Response Time Analysis. The leftmost
column describes the two documentation styles being compared,
with the last two rows comparing two groups of documentation
styles. The first category listed in each pair corresponds to a longer
response time. The difference between means is reported in square
root time, along with the 95% confidence interval for the difference
between the square root means. An approximate untransformed
value based on the minimum mean time of 284.6 seconds is listed,
along with a p-value for the square root means being the same
(Ho : pa = pB), so a statistically significantly small p-value of
p < 0.05 implies that the means are different.

statistically different. When considering response time, a threshold
value of € = 20 seconds was used (i.e. controlled response time
averages that are within 20 seconds of each other are considered
the same). However, the results of this analysis indicated that none
of the documentation styles were statistically indistinguishable at

this threshold.

4.2 Conclusions

The numerical results of these analyses for both response time and
response accuracy are shown in Tables 1 and 2, respectively. The
key conclusions and associated p-values from the analysis are listed
as follows:

(1) The no documentation (control) style (A) has 10 times
higher odds of eliciting a correct answer than (C) com-
ments alone (p = 0.011), even when controlling for re-
sponse time. When grouped together, all cases with-
out comments (A U B) have 31 times higher odds of
eliciting a correct answer than all cases with comments
(C U D), with a p-value of p = 0.0004.

One interpretation of this result is that documentation can pro-
vide a false sense of comprehension on the part of the programmer,
leading them to believe that they understand the code through the
documentation without taking time to truly determine how the pro-
gram functions. It should also be noted that the documentation was
not meant to be misleading in any way, and that this phenomenon
was visible across all code snippets.

Scott Kolodziej

Documentation Odds

Category Pair Ratio p-value
A/B 1.30 0.995
T ¥ A s o0itt
T S P ied
........... AR b
........... BT 600
........... T B R S PR P
........... BRI R e
........... ST s s
........... CTE T e s
........... R R S P
(AUB)/(CUD) 31.52 0.0004***
BUDY AU e o

Table 2: Statistics for Response Accuracy. The leftmost column
describes the two documentation styles being compared, with the
last two rows comparing two groups of documentation styles. The
first category listed in each pair has better odds of eliciting a correct
answer, and the odds ratio is reported in the middle column. The
p-value for equal odds (Hp : pa = pp) is given in the last column; a
small p-value of p < 0.05 implies that the odds of eliciting a correct
answer are statistically significantly different.

This result calls into question traditional wisdom regarding the
benefits of comments as documentation [11], but it cannot be ig-
nored given both its magnitude and strong statistical significance.
Further study to determine under what conditions comments are
most beneficial (or detrimental) is warranted. If substantiated, this
trend could potentially be exploited for use in debugging: an editor
could hide comments to help a programmer focus entirely on the
mechanics of the code and improve their comprehension of it.

(2) Descriptive naming alone (B) has almost 8 times higher
odds of eliciting a correct answer than comments alone
(C) after controlling for response time (p = 0.005).

This result most directly answers the question whether descrip-
tive, “self-documenting” naming is more or less effective than com-
ments: indeed, naming was the more beneficial factor in our analy-
sis, at least with respect to correctness of understanding.

(3) The no documentation (A) and automatically gener-
ated (E) documentation cases take substantially more
time (mean times >100 seconds apart) to interpret than
full documentation (D) after controlling for response
accuracy (p = 0.011 and p = 0.016, respectively).

While these two categories of documentation yielded more cor-
rect answers, the time participants took to read and interpret the
code was disproportionately greater. This suggests that participants
resort to deciphering and mentally executing the code itself in the
absence of documentation.

SIGCSE: G: Empirical Assessment of Software Documentation Strategies

(4) Documentation styles that elicit more correct responses
generally take longer to interpret; the inverse is also
true. In other words, there is a weak inverse relation-
ship between response time and accuracy.

This is a surprising result, as one would expect documentation
styles that are difficult to interpret or unhelpful would lead to both
increased response times and fewer correct responses, with the
inverse true for more helpful documentation styles. Instead, our
data suggest that a trade-off exists, and that a lack of good in-
source documentation may lead to a better understanding of the
functionality of the code at the cost of time.

4.3 Threats to External Validity

As with any empirical study, we list below several reasons the
results of this study may not generalize to other contexts without
further study or verification:

o Student developers versus professionals. The experiment sam-
pled exclusively from a student population, which may or
may not generalize well to professional developers [13].

e Programming language-specific effects. This experiment was
conducted in C++ as undergraduate computing majors at
Texas A&M University are required to complete an introduc-
tory course in C++. It is unknown whether these results will
generalize to other programming languages. It is interesting
to note that our results are substantially different from previ-
ous studies done in Fortran and PL/I [18, 22], but the precise
cause for this difference warrants further investigation.

o Code snippets versus large codebases. Each code snippet in
this experiment was an isolated and self-contained program,
but whether these results will generalize to larger codebases
is unknown.

4.4 Future Directions

Moving forward, replication of this experiment via a second trial of
similar size could help to greatly increase the statistical significance
of the results and further define the effects of each documentation
strategy relative to one another. Additionally, further studies are
planned to help better understand the detrimental effect that com-
ments had on participant accuracy and distinguish it from scenarios
where comments are more beneficial. For example, previous stud-
ies have suggested that comments may be beneficial for software
maintenance tasks [14], but also that they risk becoming outdated
in that same context [1, 8]. The location and type of comments can
also vary greatly, with several broad categories including header
comments (describing what an entire class or function does), multi-
line block comments, and single line comments. In our study and in
the majority of the existing literature, no firm distinction is made
regarding the type of comments used, so future work in this area
to differentiate the efficacy of each would be beneficial.

ACM Student Research Competition Grand Finals, 2019,

REFERENCES

[1] Hirohisa Aman, Sousuke Amasaki, Tomoyuki Yokogawa, and Minoru Kawahara.
2017. Empirical Analysis of Words in Comments Written for Java Methods. IEEE.
375-379 pages. https://doi.org/10.1109/SEAA.2017.23

[2] Apple, Inc. 2018. WebKit Code Style Guidelines. Retrieved from https://webkit.
org/code-style-guidelines/. Accessed: 2019-04-14.

[3] Victor R Basili. 2007. The role of controlled experiments in software engineering
research. In Empirical Software Engineering Issues. Critical Assessment and Future
Directions. Springer, 33-37.

[4] Stefan Endrikat, Stefan Hanenberg, Romain Robbes, and Andreas Stefik. 2014.
How do API documentation and static typing affect API usability?. In Proceedings
of the 36th International Conference on Software Engineering. ACM, 632-642.

[5] Free Software Foundation, Inc. 1992. GNU Coding Standards. Retrieved from
https://www.gnu.org/prep/standards/standards.html. Accessed: 2019-04-14.

[6] Google. 2019. Google C++ Style Guide. Retrieved from http://google.github.io/
styleguide/cppguide.html. Accessed: 2019-04-14.

[7] Google. 2019. Google Developer Documentation Style Guide. Retrieved from
https://developers.google.com/style/. Accessed: 2019-04-14.

[8] Walid M Ibrahim, Nicolas Bettenburg, Bram Adams, and Ahmed E Hassan. 2012.
On the relationship between comment update practices and software bugs. Jour-
nal of Systems and Software 85, 10 (2012), 2293-2304.

[9] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.
Pearson Education.

[10] Steve McConnell. 2004. Code Complete. Pearson Education.

[11] Jef Raskin. 2005. Comments are more important than code. Queue 3, 2 (2005),
64-65.

[12] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program
properties from big code. In ACM SIGPLAN Notices, Vol. 50. ACM, 111-124.

[13] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. 2015. Are students represen-
tatives of professionals in software engineering experiments?. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 666-676.

[14] S.B. Sheppard, Curtis, Milliman, and Love. 1979. Modern Coding Practices and

Programmer Performance. Computer 12, 12 (1979), 41-49. https://doi.org/10.

1109/MC.1979.1658575

D. I K. Sjoeberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N. .

Liborg, and A. C. Rekdal. 2005. A survey of controlled experiments in software

engineering. IEEE Transactions on Software Engineering 31, 9 (Sep. 2005), 733-753.

https://doi.org/10.1109/TSE.2005.97

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K. Vijay-

Shanker. 2010. Towards Automatically Generating Summary Comments for Java

Methods. In Proceedings of the IEEE/ACM International Conference on Automated

Software Engineering (ASE '10). ACM, New York, NY, USA, 43-52. https://doi.

0rg/10.1145/1858996.1859006

Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. 1996. The

effects of comments and identifier names on program comprehensibility: an

experimental investigation. 7. Prog. Lang. 4, 3 (1996), 143-167. http://compscinet.

des.kcl.ac.uk/JP/jp040302.abs.html

[18] Ted Tenny. 1988. Program readability: Procedures versus comments. IEEE

Transactions on Software Engineering 14, 9 (1988), 1271-1279.

Walter F Tichy. 1998. Should computer scientists experiment more? Computer

31, 5 (1998), 32-40.

Eirik Tryggeseth. 1997. Report from an experiment: Impact of documentation on

maintenance. Empirical Software Engineering 2, 2 (1997), 201-207.

[21] John W. Tukey. 1949. Comparing Individual Means in the Analysis of Variance.
Biometrics 5, 2 (1949), 99-114. http://www.jstor.org/stable/3001913

[22] Scott N Woodfield, Hubert E Dunsmore, and Vincent Yun Shen. 1981. The effect
of modularization and comments on program comprehension. In Proceedings of
the 5th international conference on Software engineering. IEEE Press, 215-223.

[15

[16

=
=

[19

[20

https://doi.org/10.1109/SEAA.2017.23
https://webkit.org/code-style-guidelines/
https://webkit.org/code-style-guidelines/
https://www.gnu.org/prep/standards/standards.html
http://google.github.io/styleguide/cppguide.html
http://google.github.io/styleguide/cppguide.html
https://developers.google.com/style/
https://doi.org/10.1109/MC.1979.1658575
https://doi.org/10.1109/MC.1979.1658575
https://doi.org/10.1109/TSE.2005.97
https://doi.org/10.1145/1858996.1859006
https://doi.org/10.1145/1858996.1859006
http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html
http://compscinet.dcs.kcl.ac.uk/JP/jp040302.abs.html
http://www.jstor.org/stable/3001913

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	3.1 Experimental Design and Methods

	4 Results and Contributions
	4.1 Statistical Analyses
	4.2 Conclusions
	4.3 Threats to External Validity
	4.4 Future Directions

	References

