
ICCAD: U: DALS: Delay-driven Approximate Logic Synthesis
Zhuangzhuang Zhou (Author), Weikang Qian (Research Advisor)

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
{zhouzhuangzhuang, qianwk}@sjtu.edu.cn

Author ACM Student Member Number: 6299254; Category: Undergraduate Research

1 PROBLEM AND MOTIVATION
As modern VLSI designs encompass more complexity and transistor
technology reaches nanoscale, it has been increasingly difficult to
improve the performance and energy consumption of circuits by
conventional design methods [18]. On the other hand, many recent
applications, including image rendering, signal processing, speech
recognition and machine learning, are error tolerant by their nature.
Their error tolerance is caused by various reasons. For example,
some of them are resilient to input noises. Some of them have
outputs intended for human perception and can tolerate errors
imperceptible to users. Others do not offer a unique answer and
a variety of answers are acceptable. These classes of applications
can tolerate inexact computation in substantial portions of their
execution [3]. Under this circumstance, approximate computing
was proposed as a novel circuit design paradigm [4]. Its basic idea
is to modify the function of a target circuit without affecting its
usability in its application. If themodification is proper, the resulting
circuit will have smaller area, lower power consumption, and better
performance than the original version.

Fig. 1 shows the basic idea and effectiveness of approximate
computing. For the 2-bit digital multiplier shown in Fig. 1b, we
can introduce an error to its function by changing the only 4-bit
output from “1001” to “111” [7]. The resulting Karnaugh-map for
the approximate design is shown in Fig. 1c. The corresponding
approximate circuit is shown in Fig 1d. We can see that for a 2-bit
digital multiplier, the approximate design proposed in [7] is much
simpler than the accurate one. It saves 3 gates and the number of
basic gates lying on the critical path is reduced by 1. Thus, with the
cost of 6.25% inaccuracy, the area and delay of the circuit are reduced
by 37.5% and 33.3% respectively. Besides, the power consumption
of the 2-bit multiplier circuit can be significantly reduced.

Given the large design space and difficulty in finding the most
optimal way to inject error, a systematic methodology is needed
to generate approximate designs for an arbitrary circuit. This is
known as approximate logic synthesis (ALS), which is the focus of
our work. Given a target circuit, ALS seeks to synthesize an optimal
approximate design that could satisfy the given error constraint,
while trying to maximize the reduction of area, delay and power
consumption of the circuit.

Significant progress has been made in ALS in recent years [1,
8, 9, 11, 13, 16, 17, 19–21]. However, all proposed ALS methods
mainly focused on reducing the circuit area. Although the circuit
delay is usually also reduced as a byproduct of these ALS methods,
the potential power of ALS in improving circuit delay has not yet
been fully explored. For error tolerantapplications such as real-time
signal processing, they are , but they also have a stringent deadline
to meet. For these applications, delay, instead of area, is the primary
concern. Thus, if we can develop a delay-oriented ALS flow, it will
be very helpful in synthesizing circuits for these applications.

00 01 11 10

00 0000 0000 0000 0000

01 0000 0001 0011 0010

11 0000 0011 1001 0110

10 0000 0010 0110 0100

b1b0

a1a0

(a) Karnaughmap of an accurate
multiplier.

b1
a1

b0
a1

a0

b1

a0

b0

out2

out1

out0

out3

(b) Circuit of the accurate multi-
plier.

00 01 11 10

00 000 000 000 000

01 000 001 011 010

11 000 011 111 110

10 000 010 110 100

b1b0

a1a0

(c) Karnaugh map of an approxi-
mate multiplier

b1
a1

b0
a1

a0

b1

a0

b0

out2

out1

out0

(d) Circuit of the approximate
multiplier.

Figure 1: Accurate and approximate designs of 2-bit multiplier.

Given the difficulty in optimizing the approximate circuits glob-
ally, previous ALS methods usually repeatedly apply approximate
local changes (ALCs) to the gates in a circuit until the given er-
ror constraint is reached. In these approaches, where area is the
primary concern, all gates in the circuit are treated equally since
they contribute to the area equally regardless of their locations in
the circuit. However, this is completely different for delay mini-
mization. Circuit delay is determined by the critical paths and only
the gates on the critical paths contribute to the delay. Furthermore,
even doing local changes repeatedly on specific gates may not be
effective. This is because there usually exist multiple critical paths
of the same lengths. The local change may reduce the length of a
particular critical path, but the lengths of the other critical paths
still remain the same. Thus, to effectively reduce the delay, all the
critical paths should be shortened simultaneously.

In this work, we propose DALS, a Delay-driven Approximate
Logic Synthesis framework for delay-oriented ALS. DALS is a gen-
eral framework that supports a wide range of ALCs and error met-
rics. One specific challenge in the DALS workflow is the selection of
the sets of nodes to apply the ALCs, since there exist an exponential
number of choices in a circuit. To solve this problem, we propose
to establish a critical error network (CEN) from the circuit and then
solve a maximal flow problem on the CEN. Our experimental results
show that DALS produces approximate circuits with significantly
reduced delays compared to the state-of-the-art ALS approaches.



2 BACKGROUND AND RELATEDWORK
2.1 AND-Inverter Graph
An AND-Inverter Graph (AIG) is a directed acyclic graph (DAG) that
implements a logic function [10]. Each node in an AIG is either a
primary input (PI) or a two-input AND gate. If a node corresponds
to a two-input AND gate, we call it a functional node. The nodes
in the AIG that give the final outputs of the logic function are also
marked as primary outputs (POs) of the AIG. The edges in an AIG
can be complemented, indicating the inversion of the signal.

2.2 Error Metrics
There are two typical quantities to evaluate the error of an approxi-
mate circuit, error rate (ER) and mean error distance (MED). ER is
defined as the probability of an input pattern that gives an erro-
neous output for the approximate circuit. MED treats the output as a
binary number andmeasures the average numerical deviation of the
output of the approximate circuit from the correct output. For the
approximate multiplier shown in Fig. 1d, if the inputs are uniformly
distributed, its ER is 1/16 = 6.25% and its MED is 2 · 1/16 = 0.125.

2.3 Related Works
Previous works have proposed a number of ALS methods [1, 8, 9, 11,
13, 16, 17, 19–21]. Since ALS is a computationally hard optimization
problem, many state-of-the-art ALS techniques are based on apply-
ing ALCs to the circuits. For example, Shin and Gupta proposed to
apply constant-0 and constant-1 replacement to internal gates [13].
Venkataramani et al. proposed to substitute one signal in the circuit
by another with similar functionality [16]. Yao et al. proposed to
perform local approximate disjoint bi-decomposition to internal
signals to reduce the local area [21]. These previous works mainly
focus on area reduction, with delay reduction as a side effect. The
potential power of ALS in circuit delay reduction has not been fully
explored.

3 APPROACH AND UNIQUENESS
3.1 Methodology
In this work, DALS is implemented on the AND-inverter graph
(AIG) representation of a circuit [10]. The critical graph G = (V ,E)
for an AIG is a subgraph of the AIG, where V and E are the sets of
nodes and edges, respectively, on the critical paths of the AIG. For
example, the colored nodes in Fig. 2a mark the critical graph of the
AIG, which is shown in Fig. 2b.

We call a cut for a critical graph of an AIG a critical cut for the
AIG. For example, nodes 8 and 9 form a critical cut for the AIG
shown in Fig. 2a. The depth of the entire AIG can be reduced by
reducing the depth of all nodes in the critical cut. In approximate
computing, the depth of a node can be reduced by performing
an ALC that could introduce error. There usually exist multiple
critical cuts and multiple candidate ALCs for each node in the AIG.
Different choices of the critical cut and ALCs could lead to different
error impacts on the resulting approximate AIG.

In order to reduce the depth of an AIG, we need to shorten all
critical paths simultaneously. Specifically, for a critical cut, if we
can reduce the depth of all nodes in the cut, then the depth of the
entire AIG can be reduced. For example, suppose that we are able

1

2

3

4

5

7

6

8

9

10

11

PIs

POs

Critical Cut

(a)

3

4

7

8

9

10

11

0.344

0.189

0.186

0.438

0.439PIs POsCut

(b)

Figure 2: Illustration of (a) an AIG and (b) its critical graph.

to reduce the depths of nodes 8 and 9 in Fig. 2a both from 2 to 1,
then the depth of the entire AIG reduces from 3 to 2.

In our approach, we will repeatedly select a critical cut and
a set of ALCs to modify the nodes in the selected cut until the
approximate AIG reaches the error constraint. Each iteration is
expected to reduce the depth of the AIG by one, but at the same
time, increase the error of the approximate AIG. Since we want to
maximize the depth reduction, we should maximize the number of
iterations. This requires that in each iteration, we should select the
cut and the associated set of ALCs that lead to the minimum error
impact among all choices. For simplicity, we call the cut the best
critical cut.

The overall flow of DALS is summarized in Algorithm 1. To make
the flow general, besides the input AIG and the error threshold, the
flow also takes a user-specified approximation operator op as an
input. The operator op should produce a set of ALCs for a node that
could reduce the depth of the node. An example is replacing a node
with a constant [13]. It includes two specific changes, replacement
by a constant 0 and replacement by a constant 1. It can be easily
seen that a constant replacement reduces the depth of the node
to 0. Some other examples include the approximate substitution
proposed in [16] and the approximate disjoint bi-decomposition
proposed in [21].

3.2 Selecting the Best Critical Cut and the
Associated Approximate Logic Changes

A crucial step (i.e., Line 5 in Algorithm 1) in our proposed flow is
to find the critical cut and the associated set of ALCs that lead to
the minimum error impact. For simplicity, we call the cut the best

2



Algorithm 1: The proposed flow of DALS.
Input: an AIG G , an error threshold T , and an approximation

operator op .
Output: an approximate AIG Gapx with reduced depth and error

e ≤ T .
1 Gnew ⇐ G ;
2 while e ≤ T do
3 Gapx ⇐ Gnew ;
4 д ⇐ GetCriticalGraph(Gapx );
5 (Cut, ApxChanдe) ⇐ GetCutALC(д, op);
6 Gnew ⇐ ApplyChange(Gapx , Cut, ApxChanдe);
7 e ⇐ GetError(G, Gnew );

8 return Gapx ;

critical cut. The most straightforward approach is to enumerate all
critical cuts and all sets of ALCs for each cut and then choose the
combination with the minimum error. However, the total number
of the critical cuts grows exponentially with the size of the AIG.
Furthermore, for each cut, the number of applicable ALCs grows
exponentially with the size of the cut. Bare enumeration is impracti-
cal for large AIGs. To solve this issue, we propose to transform this
problem into a network flow problem. This transformation relies
on our proposed estimation of the error impact of applying a set of
ALCs to a critical cut.

3.2.1 Estimating the Error Impact of Applying a Set of ALCs
to a Critical Cut. The most straightforward way to evaluate the
error impact of applying a set of ALCs to the critical cut is to
apply the set of ALCs and then calculate the corresponding error
metrics with simulation. However, the total number of critical cuts
grows exponentially with the size of the AIG. And trying out all
the available options with bare enumeration is impractical for large
circuits.

To effectively estimate the error impact, we propose the follow-
ing way to estimate the error impact of a set ALCs. Suppose that the
critical cut containsm nodes n1,n2, . . . ,nm and for each 1 ≤ i ≤ m,
the ALC applied to node ni isAi . For each node ni , we evaluate the
error impact of applying ALC Ai to node ni alone and denote the
value as ei . Then, we estimate the error impact of applying the set
of ALCs to the nodes in the critical cut as the sum e1 +e2 + · · ·+em .

With error impact decomposition, we only need to keep the ALC
that gives the minimum error impact for each functional node. We
call this ALC the optimal ALC of the node and its error impact
the minimum error impact (MEI) of the node. After obtaining the
MEI of each functional node in the critical graph, we assign that
value to the node. For example, the value near each functional node
shown in Fig. 2b denotes the MEI of the node. Now, the problem of
selecting the best critical cut simply becomes selecting a cut for the
critical graph so that the sum of the MEIs of all nodes in the cut is
minimal.

3.2.2 Selecting the Best Critical Cut. In this section, we present
a method to select the best critical cut. Our method first maps the
original critical graph into a critical error network (CEN) and then
solves a network flow problem on the CEN.

The CEN is built from the critical graph. We also need to assign
proper capacities to the edges in CEN. The details for building the
CEN is shown below.

(1) For each functional node n with MEI e in the critical graph,
we add a pair of nodes na and nb to the CEN. We also add
an edge from na to nb with capacity of e to the CEN.

(2) For each edge from a functional node u to a functional node
v in the critical graph, we add an edge from ub to va with
infinite capacity to the CEN.

(3) We add a source node s . For each edge from a PI node p to a
functional node n in the critical graph, we add an edge from
s to na with infinite capacity to the CEN.

(4) We add a sink node t . For each PO node q in the critical
graph, if it is a functional node, then we add an edge from
qb to t with infinite capacity to the CEN.

The CEN built from the critical graph shown in Fig. 2b is given in
Fig. 3. The CEN is a classic flow network [2]. By the max-flow min-
cut theorem [2], we can find a minimum cut of the CEN by solving
the maximum flow problem on the CEN. Once we have identified
each edge in the minimum cut, we can get the corresponding nodes
in the critical graph from the mapping relation and obtain the cut
in the critical graph that gives the minimum sum of MEIs.

7
a

8
b

9
b

10
a

11
a

s t7
b

9
a

8
a

∞

∞

∞

∞

∞

0.189

0.344

0.186

∞

∞

10
b

11
b

0.438

0.439

∞

Figure 3: The critical error network built from the critical graph
shown in Fig. 2b.

3.2.3 The Entire Flow. Algorithm 2 shows the entire flow for
finding the best critical cut and the associated set of ALCs,

3.3 Uniqueness
The novelty of the proposed approach is summarized as follows:

(1) Provide a general delay-driven ALS framework that can ef-
fectively reduce global delay.

(2) Build critical error network and formulate a max flow prob-
lem to find the best critical cut.

(3) Support a wide range of approximate local changes and some
commonly-used error metrics.

4 RESULTS AND CONTRIBUTIONS
We performed two sets of experiments to evaluate the effectiveness
of our DALS flow. First, we applied our method to some common
benchmarks, and compared the result with the state-of-the-art area-
driven approximation technique proposed in Su [14]. Second, we

3



Algorithm 2: The flow of the function GetCutALC for finding the
best critical cut and the associated set of ALCs.
Input: a critical graph д and an approximation operator op .
Output: the critical cut Cut and the associated set of ALCs

ApxChanдe that lead to the minimum error impact.
1 foreach node n in graph д do
2 foreach ALC x of node n generated by the approximation operator

op do
3 obtain the error impact of applying ALC x to node n;

4 n .e ⇐ the minimum error impact over all ALCs of n;
5 n .OptmALC ⇐ the ALC of n with the minimum error impact;

6 f ⇐ BuildCEN(д);
7 minCut ⇐ SolveMaxF low (f );
8 Cut ⇐ EdgetoNode(minCut );
9 ApxChanдe ⇐ GetBestALC(Cut );

10 return Cut and ApxChanдe ;

applied ourmethod to synthesize approximate adders and compared
the results with the state-of-the-art manual designs of approximate
adders. We also compared the qualities of the approximate adders
generated with our approach, and the ones generated with the
method proposed by Chandrasekharan [1].

4.1 Study on Common Benchmarks under
Error Rate Constraint

In this set of experiments, we selected several ISCAS85 benchmarks
and an arithmetic circuit ALU4 synthesized by Synopsys Design
Compiler [15]. We chose ER as the error metric.

Figure 4: Depth reduction rate versus error rate by DALS.

The experimental results are shown in Fig. 4, which illustrates
the relationship between depth reduction rate and ER for all the
benchmarks. We can see that DALS can reduce the depth of the
AIG when some inaccuracy is allowed and the depth reduction rate
increases with ER.

We further took one point on the depth-reduction-rate-versus-
ER curve for each benchmark and performed technology mapping

to the approximate AIG to obtain the area and delay of the final
mapped circuit. We can see that for all benchmarks, DALS can
reduce the delay of the final mapped circuit when some inaccuracy
is allowed. For benchmarks C880, C1355, and C1908, the circuit
delays can be reduced dramatically compared to the introduced ER.

Table 1: DALS results and comparison with a state-of-the-art area-
driven ALS method [14].

DALS [14]‡

circuit error rate ∆area† ∆delay† ∆area ∆delay
C880 10.73% 17.90% 33.33% 24.04% 16.67%
C1355 12.48% 95.83% 93.83% 41.68% 2.53%
C1908 3.78% 58.24% 55.60% 58.63% 45.14%
C3540 14.31% 19.80% 16.37% 35.67% 8.33%
C5315 15.98% 3.01% 19.92% 13.10% 0.90%
C7552 6.38% 4.43% 16.90% 21.79% 0.91%
ALU4 9.45% 33.86% 19.23% 68.67% 7.69%

† ∆Area and ∆Delay are the area reduction rate and delay reduction
rate, respectively, of the approximate circuit with respect to the original
circuit.
‡ The results are post-processed by delay-driven traditional logic syn-
thesis.

To study the effectiveness of DALS, we compared it with a state-
of-the-art area-driven ALS approach [14]. Previous area-driven ALS
approaches have been proved to be effective in reducing circuit
area. However, they do not focus on the delay. To make it fair,
after a circuit had been synthesized by the ALS method in [14], we
further applied delay-driven traditional logic synthesis from ABC
to minimize the delay of the approximate circuit. The results of the
comparison study are shown in the last two columns in Table 1.

From the results, we can see that even after subsequent delay-
driven traditional logic synthesis, the state-of-the-art area-driven
ALS method is not optimal in reducing delay. In certain cases, al-
though the areas of the circuits reduce significantly, the delays still
stay nearly the same. This is reasonable because an area-driven ALS
method does not specifically optimize the nodes on the critical paths
and it may choose other nodes to perform approximate changes.
Thus, DALS can provide a better solution when delay is the primary
goal. Since area reduction is just a side effect of DALS, it may not
be as much as that of the area-driven ALS method. However, for
benchmark C1355, DALS can even reduce more area.

4.2 Study on Approximate Adders under Mean
Error Distance Constraint

In this set of experiments, we applied DALS to two accurate adder
designs RCA_N8 and RCA_N16, which are 8-bit and 16-bit ripple
carry adders, respectively, to generate the corresponding 8-bit and
16-bit approximate adders. We used MED, which is one of the most
widely-used error metrics for approximate adders [5], as the error
metric in DALS.

The experimental results are shown in Table 2. The synthesized
adders were compared to two types of previously proposed manu-
ally designed approximate adders. They are generic accuracy config-
urable adder (GeAr) [12] and accuracy-configurable adder (ACA) [6].
The experimental results show that DALS can generate highly com-
petitive approximate adders with reduced delays. In most cases, the

4



adders synthesized by DALS have better areas, delays, MEDs, and
MREDs than the previous manual designs at the cost of higher ERs.
Thus, DALS can provide a better solution for many real-world appli-
cations where MED and MRED are more important than ER, such
as image processing and machine learning. The fact that DALS gen-
erates adders with smaller MEDs but larger ERs is because the error
metric is set as MED in DALS. Given this error metric, DALS tends
to approximate the logic that affects the less significant outputs of
the adder and it ignores the influence to ER.

Table 2:Approximate adders synthesized by DALS and comparison
with some manually designed approximate adders.

circuit ER MRED MED area delay
RCA_N8 0.00% 0.0000% 0.00 140 10.2

GeAr_N8_R2_P4 2.37% 0.6924% 1.50 138 8.6
DALS_N8_1 22.64% 0.5638% 1.07 134 8.4

GeAr_N8_R2_P2 18.73% 3.674% 7.52 128 7.0
DALS_N8_2 39.47% 2.804% 5.45 131 6.6

GeAr_N8_R1_P2 30.05% 7.104% 15.29 124 5.4
DALS_N8_3 69.92% 6.067% 13.61 85 5.4
RCA_N16 0.00% 0.0000% 0.00 315 13.4

GeAr_N16_R4_P4 5.86% 0.2657% 124.4 299 10.2
DALS_N16_1 51.85% 0.2321% 115.9 280 10.0

GeAr_N16_R2_P4 11.65% 0.9819% 510.4 290 8.6
DALS_N16_2 67.31% 1.0752% 514.6 269 8.2

ACA_II_N16_Q4 48.16% 3.893% 2049 260 7.0
DALS_N16_3 87.70% 3.024% 2043 207 7.0

Finally, we compared DALS to a previous ALS flow [1] that was
also tested on approximate adders. The ALS flow [1] is based on
approximation-aware rewriting of AIGs. We compared the quality
of the 16-bit approximate adders synthesized by DALS to that by
the previous flow [1]. The comparison results are shown in Table 3.
To make it fair, we used the same 16-bit ripple carry adder design
and the same setup as the experiments in [1] when testing DALS.

Table 3: Comparison between DALS and the work in [1] on the syn-
thesis of 16-bit approximate adders.

circuit ER/% WCE MBF area delay area×delay runtime/s
appx9 99.80 2038 9 254 13.4 3403.6 229
appx11 96.88 496 5 277 13.4 3711.8 201
appx13 99.22 1024 7 264 13.4 3537.6 220

DALS_N16_1 51.85 340 7 280 10.0 2800.0 6
appx12 99.90 4090 11 226 12.7 2870.2 187

DALS_N16_2 67.31 5380 11 269 8.2 2205.8 16
appx8 99.64 8320 13 120 7.0 840.0 151
appx10 99.64 8320 13 120 7.0 840.0 150

DALS_N16_3 87.70 6144 9 207 7.0 1449.0 23

Instead of MED, the previous work [1] chose to use the worst-
case error (WCE) and maximum bit-flip (MBF) error to evaluate
the quality of the approximate adders. From the table, we can see
that the adder synthesized by DALS outperforms the corresponding
approximated adder(s) from [1] in at least two error metrics among
the three, i.e., ER, WCE, and MBF. Moreover, the DALS adder is
much better in terms of area-delay product (ADP), which is a more

comprehensive measure on the hardware quality. In conclusion, the
approximate adders synthesized by DALS are better than those syn-
thesized by the ALS method in [1] when the accuracy requirement
is high.

4.3 Contributions
In this work, we proposed DALS, a delay-driven approximate logic
synthesis framework, which can produce approximate circuits with
significantly reduced delays. Its basic idea is to establish a critical
error network (CEN) for the AIG representation of a target circuit
and utilize the CEN to select the optimal set of nodes to apply
depth-reduction approximate local changes. Experimental results
show that DALS outperforms the state-of-the-art ALS approaches,
and proves to be a promising solution for delay-oriented tasks.

5 PUBLICATION
[1] Z. Zhou, Y. Yao, S. Huang, S. Su, C. Meng, and W. Qian. 2018.
DALS: Delay-driven Approximate Logic Synthesis. In ICCAD.

REFERENCES
[1] A. Chandrasekharan, M. Soeken, et al. 2016. Approximation-aware rewriting of

AIGs for error tolerant applications. In ICCAD. 83:1–83:8.
[2] T.H. Cormen, C.E. Leiserson, et al. 2001. Introduction to algorithms. MIT Press.
[3] H. Esmaeilzadeh, L. Ceze A. Sampson, and D. Burger. 2012. Neural Acceleration

for General-Purpose Approximate Programs. In MICRO. 449–460.
[4] J. Han and M. Orshansky. 2013. Approximate computing: An emerging paradigm

for energy-efficient design. In ETS. 1–6.
[5] H. Jiang, J. Han, and F. Lombardi. 2015. A comparative review and evaluation of

approximate adders. In GLSVLSI. 343–348.
[6] A.B. Kahng and S. Kang. 2012. Accuracy-configurable adder for approximate

arithmetic designs. In DAC. 820–825.
[7] P. Kulkarni, P. Gupta, and M. Ercegovac. 2011. Trading Accuracy for Power with

an Underdesigned Multiplier Architecture. In VLSID. 346–351.
[8] G. Liu and Z. Zhang. 2017. Statistically certified approximate logic synthesis. In

ICCAD. 344–351.
[9] J. Miao, A. Gerstlauer, and M. Orshansky. 2014. Multi-Level approximate logic

synthesis under general error constraints. In ICCAD. 504–510.
[10] A. Mishchenko, S. Chatterjee, and R. Brayton. 2006. DAG-aware AIG rewriting:

A fresh look at combinational logic synthesis. In DAC. 532–535.
[11] A. Ranjan, A. Raha, et al. 2014. ASLAN: Synthesis of approximate sequential

circuits. In DATE. 364:1–364:6.
[12] M. Shafique, W. Ahmad, et al. 2015. A low latency generic accuracy configurable

adder. In DAC. 86:1–86:6.
[13] D. Shin and S. K. Gupta. 2011. A new circuit simplification method for error

tolerant applications. In DATE. 1–6.
[14] S. Su, Y. Wu, and W. Qian. 2018. Efficient batch statistical error estimation for

iterative multi-level approximate logic synthesis. In DAC. 54:1–54:6.
[15] Synopsys Inc. 2018. http://www.synopsys.com. (2018).
[16] S. Venkataramani, K. Roy, and A. Raghunathan. 2013. Substitute-and-simplify: A

unified design paradigm for approximate and quality configurable circuits. In
DATE. 1367–1372.

[17] S. Venkataramani, A. Sabne, et al. 2012. SALSA: Systematic logic synthesis of
approximate circuits. In DAC. 796–801.

[18] M. M. Waldrop. 2016. The chips are down for Moore’s law. Nature 530, 7589
(2016), 144–147.

[19] Y. Wu and W. Qian. 2016. An efficient method for multi-level approximate logic
synthesis under error rate constraint. In DAC. 128:1–128:6.

[20] Y. Wu, C. Shen, et al. 2017. Approximate logic synthesis for FPGA by wire
removal and local function change. In ASPDAC. 163–169.

[21] Y. Yao, S. Huang, et al. 2017. Approximate disjoint bi-decomposition and its
application to approximate logic synthesis. In ICCD. 517–524.

5


