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ABSTRACT
Noisy intermediate-scale quantum devices face challenges in achiev-
ing high-fidelity computations due to hardware-specific noise. We
present a framework for a deep-learning compiler of quantum
circuits, designed to reduce the output noise of circuits run on a
specific device. Our approach is to first train a convolutional neural
network on experimental data from a quantum chip, so as to learn
a noise model for that device. We then view the trained network as
a noise predictor for quantum circuits and design a compiler that
rewrites circuits so as to minimize expected noise, as predicted by
the network. We tested this approach using the IBM 5-qubit devices
and benchmarked the compiled circuits against the IBM Qiskit com-
pilation algorithm. The results we obtained show a reduction in
output noise of 11% (95% CI [10%, 12%]) compared to the Qiskit
compiler. Improvement compared to the Qiskit compiler is observed
on all available 5-qubit IBM devices, but we find significantly better
noise reduction on the device on which the noise model was learned.
These results suggest that device-specific compilers designed using
machine learning may yield higher fidelity operations, increasing
the potential of quantum computing applications.

KEYWORDS
quantum computing, machine learning, artificial intelligence

ACM Reference Format:
Alexander Zlokapa and Alexandru Gheorghiu (advisor). 2020. SC19: U: A
deep learning approach to noise prediction and circuit optimization for near-
term quantum devices. In SC ’19: ACM/IEEE Supercomputing Conference,
November 17–22, 2019, Denver, CO. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 PROBLEM AND MOTIVATION
Quantum computers are expected to offer exponential speedups
over classical computers in solving certain computational tasks.
The recent demonstration of quantum computational supremacy
by the Google group further strengthens the case for the potential of
quantum computation [3]. However, the result also highlighted the
limitations of current and near-term quantum devices. It showed
that Noisy Intermediate-Scale Quantum (NISQ) devices are limited
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in usability and reliability by errors due to thermal relaxation, mea-
surement, and interactions between adjacent qubits [25]. Mitigating
the effect of these errors (or noise) is thus a pressing problem of
immediate practical relevance. Existing noise models often make
simplifying assumptions [8, 27] that limit noise mitigation tech-
niques, motivating the design of a fully learned noise model given
by deep learning.1

Before describing a quantum circuit compiler, let us take a step
back and briefly review the formulation of quantum computation
in terms of circuits. Quantum circuits are sequences of unitary
operations (“gates”) selected from a specific gate set and acting on
a number of qubits. If, by composing the gates in the set, one can
approximate any unitary operation, we say that the set is universal.
The most commonly used universal gate set is referred to as the
Clifford +𝑇 set [22]. To implement a particular quantum algorithm
described by a unitary operation, any one of an infinite number of
gate sequences can be selected from the universal set; these all form
equivalent circuits. Of course, while these circuits correspond to
the same unitary operation, each will result in a different operation
when run on a specific quantum device. This is because each gate in
the circuit is performed imperfectly on the device, thus introducing
errors in the application of the unitary. The problem of mitigating
noise can thus be phrased as a search process for the lowest-noise
circuit out of this family of equivalent circuits. In other words, given
a quantum circuit, the task is to rewrite it into an equivalent circuit
that is expected to run with higher fidelity when implemented on
some target quantum hardware.
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Figure 1: Overview of a quantum circuit compiler. An initial
circuit is rewritten by an optimization procedure to satisfy
a given objective function — here implemented as a neural
network— resulting in a circuit that ideallyminimizes noise
when run on a quantum device. We address both the opti-
mizer and objective function components in this paper.

A common approach to mitigating noise is to rewrite the initial
circuit such that the gate count is minimized as illustrated in Fig. 1.
1Code is available at https://github.com/quantummind/deepQ.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/quantummind/deepQ


SC ’19, November 17–22, 2019, Denver, CO Zlokapa and Gheorghiu

This approach works for the simple reason that fewer gates means
fewer errors (since each gate is subject to noise) [10, 17, 21]. Other
heuristics such as minimizing 𝑇 -gate count and circuit-depth can
also be used [1]. However, these are still just heuristics for minimiz-
ing noise. In other words, an objective function, such as gate count,
is minimized so as to indirectly minimize the true objective function,
noise. It is clear, however, that using a “proxy” objective function
(gate count, gate depth, etc.) — although grounded in physical as-
sumptions, whether in the locality or Markovian behavior of the
noise — oversimplifies phenomena such as dephasing, amplitude
damping, and correlated errors (“cross-talk”) between qubits. On
the other hand, designing a compiler that accounts for all sources
of noise or one that is fine-tuned for a specific device is difficult.
What we propose instead, is to use machine learning in order to
learn a noise model for a given device. We show that this approach
can lead to improved results when compared to “heuristic-based”
compilers.

In the remainder of the paper, we describe both a method for
general compilation of quantum circuits under a deep learning noise
model and a method for intelligently filling gaps in the circuit with
operations that map to the identity (a process known as “dynamical
decoupling” [9, 30–32]). A major drawback of gate count and gate
depth minimization is that gaps in a quantum circuit will remain
empty. Indeed, filling these gaps with gates would increase total
gate count. Nevertheless, replacing these sparse regions with op-
erations equivalent to the identity can reduce noise (see Sec. 2.2).
We demonstrate this explicitly by showing how our deep learning
approach outperforms the circuit optimizer used by IBM as part
of their compiler. Specifically, for 5-qubit devices, the circuits we
obtain are on average 11% “less noisy” than circuits optimized by
the IBM Qiskit compiler.

2 BACKGROUND AND RELATEDWORK
2.1 Quantum compilers
One of the most common approaches to noise optimization for
quantum circuits is to minimize gate count [10, 17, 21]. Numerous
methods exist to minimize gate count or 𝑇 -gate count, including
ZX-calculus [16] or (more commonly) repeatedly applying a set
of rewrite patterns of equivalent sequences of gates [21]. For in-
stance, a Hadamard gate, follow by an 𝑋 gate and followed by
another Hadamard gate (𝐻𝑋𝐻 ) is equivalent to a single 𝑍 gate.
These rewrite rules are typically applied until gate count can no
longer be reduced. The motivation for these methods is to reduce
qubit decoherence, which increases with time. By minimizing the
time taken to evaluate a quantum circuit, noise is approximately
suppressed. However, this paradigm neglects other effects: corre-
lated errors between qubits, certain gates being more noisy than
other gates, and rates of different types of errors (such as ampli-
tude damping and dephasing) varying across qubits. Other work on
noise optimization has focused on other specific aspects, such as
minimizing cross-talk caused by 𝑍𝑍 interactions [6]. However, all
quantum compilers that we are aware of in the literature assume
an error model a priori thus restricting the types of noise that can
be minimized.

2.2 Noise of quantum devices
The literature on learning noise models for quantum devices is
similarly limited. Recent work has quantified correlated errors with
a Gibbs random field [13], while more widely used models focus
on error rates of individual qubits and gates (single- or two-qubit
gates) [4] used in the IBM Qiskit compiler to minimize noise [11].
However, non-Markovian noise [8, 27] is not well-characterized by
such models, due to the bidirectional exchange of information to
and from the environment in a non-Markovian setting, compared
to one-way information leakage into the environment under Mar-
kovian assumptions [24]. Nevertheless, non-Markovian dynamics
are observed on quantum devices [20]. This motivates a more gen-
eral approach to a learned noise model, one that can also account
for these complex dynamics. Equipped with a more accurate noise
model, we may then define a better objective function for noise
optimization.

Due to the layout of two-qubit gates on a circuit, gaps can often
appear as a qubit must “wait” for a gate to be applied later in
the circuit. During this time, the qubit undergoes free evolution
and its state will drift. However, dynamical decoupling (DD) may
be used to suppress this effect by applying repeated pulses that
are equivalent to the identity, canceling interactions between the
system and the environment [19]. The optimal design of the DD
sequences is dependent on pulse imperfections, non-Markovianity,
and other noise model assumptions [2, 12, 15, 29, 29]. Although
basic DD sequences such as 𝑋𝑌𝑋𝑌 have been observed to preserve
single-qubit states on IBM and Rigetti devices, they break down due
to non-Markovianity [23]. Past optimization of DD sequences [5, 26]
has been generally limited to optimization of single-qubit states
within theoretical noise models, which does not allow effects such
as cross-talk to be accounted for. Since precisely characterizing non-
Markovian effects such as cross-talk on multi-qubit states in order
to determine optimal DD sequences is theoretically challenging,
we propose directly learning the noise model for arbitrary circuits
to predict the best DD sequences.

3 APPROACH AND UNIQUENESS
3.1 Overview
In this paper, we propose two methodologies to overcome the short-
comings of existing noise optimization methods: a general compiler
and a dynamical decoupling compiler. Central to both approaches
is a deep learning noise model, which serves as an objective func-
tion during circuit compilation. This noise model is a convolutional
neural network that is trained to predict the output noise of a quan-
tum circuit. The network is trained with a number of examples of
circuits and the noise in their output when run on a specific device2.
Once the model has been trained, we then design a compiler that
uses the learned model as the objective function to be optimized.
Given a circuit, 𝐶 , the compiler attempts to find an equivalent cir-
cuit, 𝐶 ′, that minimizes the expected output noise as computed by
2Output noise can be measured in a number of ways, depending on the application.
For small circuits, it is possible to classically simulate the ideal output distribution
of a circuit and then compute the trace distance (or some other distance measure
like cross-entropy [7] or energy distance [28]) between that distribution and the one
resulting from running the circuit on a quantum device. For a large circuit,𝑈 , one can
quantify noise by running𝑈𝑈 † on a known quantum state, such as |00...0⟩, and then
counting the number of 1’s in the output.
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the deep learning model (for a specific quantum device). The circuit
𝐶 ′ is then run multiple times on the quantum device to measure the
amount of noise in its output. Finally, the results are compared to
those obtained from using a traditional quantum circuit compiler.

In our first quantum compiler, we simulate random circuits on the
IBM Q Melbourne device and compile the circuits using peephole
optimization of rewrite rules (e.g. 𝐻𝑋𝐻 = 𝑍 ), similar to compilers
in the existing literature. Unlike previous work, we do not seek
to minimize gate count; instead, we greedily select rewrite rules
that are expected to reduce noise according to the deep learning
noise model. The resulting compiled circuit is compared to a circuit
for which gate count has been minimized. Simulated results are
presented below.

This approach, however, does not outperform the IBM Qiskit
compiler [11]. The reason is that that IBM compiler performs an
additional level of optimization to further minimize gate count,
rewriting the circuit into an approximation of the original circuit
that yields similar (but not necessarily identical) output states using
fewer gates. Nevertheless, for large enough circuits run on quantum
chips with various geometric constraints, the compiled circuits will
still contain many gaps. Hence, we consider a second approach that
exclusively fills in gaps of the IBM Qiskit-compiled circuit with
dynamical decoupling sequences according to the learned noise
model, adding gates so as to further reduce noise. Experimental
results on 5-qubit devices are shown below.

3.2 Uniqueness
The novel aspects of our approach are summarized as follows:

(1) Convolutional neural network noise model of quantum circuits.
By considering qubit operations in the context of neighbor-
ing qubits, more complex hardware-specific noise such as
cross-talk and phenomena due to entanglement may be di-
rectly learned. In contrast, traditional compilers (such as the
provided benchmark) only consider the noise of individual
gates and qubits.

(2) Systematic optimization of dynamical decoupling for multi-
qubit states.Weprovide a new paradigm for hardware-specific
optimization of dynamical decoupling sequences on random
circuits with highly entangled states, requiring no a priori
knowledge of dynamical decoupling sequences.

(3) Experimental realization of dynamical decoupling compilation.
In the recent literature, well-known dynamical decoupling
sequences have been measured on single- and two-qubit
states for transmon superconducting devices, with mixed
results for entangled states [23]. We observe significant noise
mitigation with new dynamical decoupling sequences for
highly entangled multi-qubit states on the IBM Q device.

3.3 General compiler
3.3.1 Simulated dataset. To generate a training set of equivalent
quantum circuits, we first perform an exhaustive search over all 2-
qubit circuits with up to 4 gates, each of which may be expressed as
a unitary matrix operation. The circuits are divided into equivalence
classes labeled by the circuit matrix representation (up to a phase
factor). The equalities found in this way may be iteratively applied

to regions of a larger quantum circuit to create a family of equivalent
circuits.

A simple noise model is simulated in Qiskit [11], calibrating
readout errors, depolarization errors and thermal relaxation er-
rors to the IBM Q Melbourne device. A ground-truth dataset is
generated with 668 equivalent families of 50 circuits, each with
up to 8 qubits and 200 gates selected from the universal gate set
{𝑋,𝑌, 𝑍, 𝐻, 𝑆,𝑇 ,𝐶𝑁𝑂𝑇 }. Hence, 1.6 million unique pairs of equiva-
lent circuits are produced, labeling each pair with the noise differ-
ence as measured by the energy distance between readout proba-
bility distributions [28].

3.3.2 Noise model. We train a deep learning model on pairs of
equivalent circuits and predict the difference in noise from the
simulated dataset. To establish encoding consistency, we perform
a lexicographic topological sort on a directed acyclic graph rep-
resentation of the circuit. Each circuit is then represented by an
multi-channel image (one channel for each gate type), allowing
pairs of images corresponding to pairs of quantum circuits to be
provided to a noise estimation model. Since correlated errors and
other local phenomena contribute to noise, we use a convolutional
neural network to compare which of two given circuits are noisier
(Fig. 2).

Given the ability of the ResNet convolutional neural network
(CNN) architecture [14] to achieve state-of-the-art results on image
regression problems [18], we propose an image encoding scheme
for quantum circuits and train a ResNet-18 model to learn the noise
difference between a pair of equivalent circuits. Because of its im-
portance as a source of noise, the𝐶𝑁𝑂𝑇 gate count is concatenated
before the fully-connected layer of the ResNet architecture.

( )( ) Δ noise

Figure 2: Deep learning noise predictionmodel consisting of
random circuit generation, image encoding via a topological
sort, and convolutional neural network prediction of the dif-
ference in noise between the initial circuits.

3.3.3 Compilation. An iterative peephole optimization algorithm
to greedily rewrite regions of the main circuit according to the
exhaustively found equivalence classes of up to 4 gates on 2 qubits
(Fig. 3). After identifying equivalence classes of each possible re-
gion, the substitution that is expected to cause the most favorable
noise reduction according to the ResNet prediction is selected. This
process is repeated until no further substitutions can be made.
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Figure 3: Peephole optimization of a quantum circuit. Pre-
computed rewrite patterns replace local regions of the cir-
cuit to form an equivalent circuit with lower noise. In the
example above, the blue and red regions are successively
rewritten.

To increase robustness, greedy peephole optimization may be
substituted for a scheme such as a Monte Carlo Tree Search, increas-
ing the number of circuits explored and involving a larger number
of comparisons to average out errors in noise prediction.

3.4 Dynamical decoupling compiler
By first applying the fully optimized IBM Qiskit compiler, we begin
with an approximate circuit whose structure is maintained. The
deep learning model is trained on circuits with random dynamical
decoupling (DD) sequences equivalent to the identity, which are
then used to fill gaps of free evolution in the circuit. Thus, gates are
added to the result of the IBM Qiskit compiler, minimizing noise
according to the learned noise model.

3.4.1 Experimental dataset. We generate random circuits of the
form 𝑈𝑈 † to ensure an ideal state of |0⟩⊗𝑛 for an 𝑛-qubit circuit.
This allows noise to be easily measured as the trace distance be-
tween the observed and ideal state by counting the number ones in
the bitstring resulting from measuring the output.

The circuits we generated are similar to the recent Google quan-
tum supremacy experiment [3]. The circuits consist of multiple cy-
cles. Each cycle is a layer of single-qubit gates and a two-qubit gate.
The single-qubit gates are selected randomly from {

√
𝑋,

√
𝑊,

√
𝑍 },

where𝑊 = (𝑋 + 𝑌 )/
√
2; the two-qubit gate is a 𝐶𝑋 gate between

an arbitrary pair of qubits, despite the limited connectivity of the
5-qubit IBM Q Burlington architecture (Fig. 4).
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Figure 4: Two 5-qubit IBM Q connectivity architectures, cor-
responding (a) Burlington, Essex, London, Ourense, Vigo
and (b) Yorktown. Lines indicate possible two-qubit gate con-
nections. To implement a single CX gate between an arbi-
trary pair of qubits, multiple qubits and two-qubit gates are
often required to be run due to partial connectivity.

We generate 1,000 random 5-qubit circuits with 5 cycles each3.
Each circuit is then compiled to full optimization with the IBM
Qiskit compiler (optimization_level=3) optimized to minimize
noise on the IBM Q Burlington device. This yields a circuit expected
to have the lowest possible noise, both by relabeling qubits to apply
fewer operations to noisier couplings and by rewriting the circuit
into an approximate form that is expected to result in a state closer
to the ideal state. All gates are expressed in the native gate basis
{𝑈1,𝑈2,𝑈3,𝐶𝑋 } of the IBM Q devices, where the single-qubit gates
𝑈𝑖 are parameterized.

Random dynamical decoupling (DD) sequences are constructed
from 𝑈3 gates. To generate an 𝑙-length DD sequence, an (𝑙 − 1)-
length sequence of𝑈3 gates is generated with random parameters.
The inverse of this (𝑙 − 1)-length sequence is then compiled to a
single gate. If more than one gate results from the compilation, the
DD sequence is rejected; otherwise, the 𝑙 gates are accepted as a
valid DD sequence that is equivalent to the identity. For each of the
1,000 random circuits, we generate an additional 15 circuits that
include random DD sequences in all gaps (Fig. 5).

U U

U U

U

U U

U

U U U

Figure 5: Dynamical decoupling compilation of a quantum
circuit. A fully optimized circuit outputted by the IBM
Qiskit compiler (left) is padded with a random sequence
equivalent to the identity (right), i.e. the gates in red mul-
tiply to the identity.

3.4.2 Noise model. As in the general paradigm, we train a neural
network on pairs of equivalent circuits and predict the difference
in noise from the IBM Q Burlington dataset. Working in the native
gate set of dimension 4, we encode each topologically sorted circuit
as a 4-channel image and input circuit pairs to the network during
training similarly to Fig. 2.

Since the dataset is smaller and more prone to overfitting, we
use a smaller CNN with only two convolutional layers (5 × 5 and
3× 3 filters) and three fully-connected layers for the circuits. A step
decay is used to schedule learning rates, and batch size is optimized
for stable training. Early stopping on a validation set is used to
determine the best network.

3.4.3 Compilation. As in dataset generation, randomDD sequences
are generated from parameterized 𝑈3 gates to fill all gaps in the
circuit (Fig. 5). A tournament selection is held between pairs of
circuits to determine the circuit with the lowest expected noise out
of 1,000 candidate circuits.

4 RESULTS AND CONTRIBUTIONS
We present simulated results for the general compiler and experi-
mental results from IBM Q 5-qubit devices for the dynamical de-
coupling compiler, summarized in Table 1.
3Since we’re running 𝑈𝑈 † on the device and each cycle consists of two gates, the
overall depth of the circuit we run is 20.
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Table 1: Comparison of deep learning noise model and gate count heuristic performance. General compilation indicates the
proposed rewrite of the entire circuit via peephole optimization, evaluated on simulated data. Random DD indicates the in-
sertion of random dynamical decoupling sequences in gaps. DD compilation indicates the insertion of dynamical decoupling
sequences according to the noise model trained on IBM Q Burlington. Boldface row indicates the device for which the DD
compiler model performed best, which also corresponds to the device whose noise model was learned.

Proposed compiler Traditional compiler Device Noise improvement [95% CI]

General compilation Gate minimization Simulated 15% [6%, 21%]*
Random DD IBM Qiskit Burlington 4.5% [4.4%, 4.6%]

DD compilation IBM Qiskit Burlington 11% [10%, 12%]
DD compilation IBM Qiskit Essex 6% [4%, 7%]
DD compilation IBM Qiskit London 6% [5%, 6%]
DD compilation IBM Qiskit Ourense 6% [5%, 7%]
DD compilation IBM Qiskit Vigo 5% [4%, 6%]
DD compilation IBM Qiskit Yorktown 6% [6%, 8%]†

* Noise measured by energy distance. All other rows use trace distance.
† 5-qubit device has bowtie architecture. All other devices have T-shaped architectures.

4.1 General compiler
Greedy noise minimization with deep learning is found to be 15%±
6% (95% CI) more effective than with gate count minimization on
a random sample of 250 circuits, significantly outperforming the
standard method of noise reduction in the literature. However, we
note that gate count minimization is not the state-of-the-art in
circuit compilation, because it preserves the true ideal output state.
The fully optimized IBM Qiskit compiler yields an approximate
circuit that is sufficiently less noisy to output a state closer to
the ideal state. Having established a general paradigm for deep
learning compilers, we now propose a compiler that specifically
aims to increase gate count to reduce noise.

4.2 Dynamical decoupling compiler
We generated 500 circuits outside the training set, which were
compiled to full optimization in IBM Qiskit. We then compiled all
circuits according to the noise model learned on IBM Q Burlington,
and evaluated both the Qiskit and deep learning compilations on
all available 5-qubit IBM Q devices. The deep learning DD compiler
is shown to outperform the IBM Qiskit compiler on all devices
(Table 1). We also include a benchmark of the application of random
DD sequences in circuit gaps on the Burlington device.

The DD compiler performs significantly better on IBMQ Burling-
ton — reducing noise around twice as effectively as on other de-
vices — corresponding to the device on which the noise model was
learned. Although noise is improved osn all devices, this discrep-
ancy in hardware suggests that a device-specific noise model was
indeed learned, instead of simply recognizing states that benefit
from being preserved by DD sequences. Additionally, significant
improvement is observed over the insertion of random DD se-
quences, confirming that the compiler optimized the selection of
DD sequences.

4.3 Conclusions and future work
Compared to the IBM Qiskit compiler and widely used heuristics
such as gate count minimization, we find that deep learning pro-
vides significant improvement in noise reduction through learning a
hardware-specific noise model. Specifically, we’ve seen that our ap-
proach leads to an 11% reduction in noise on IBM’s 5-qubit devices.
Our results suggest that deep learning may substantially improve
noise mitigation on real-world quantum hardware, addressing a
major obstacle in the applicability of NISQ devices.

We think this work opens up several exciting directions for fu-
ture research. First, it would be interesting to see what information
about the noise model can be recovered from the trained CNN.
Currently, we are using the CNN as a black box for circuit com-
pilation, however it would be useful to understand how effects
such as cross-talk and non-Markovianity are represented within
the network itself. Secondly, while dynamical decoupling was al-
ready known as a way of mitigating the effects of noise, we would
like to see whether the general machine learning approach can pro-
vide us with new techniques for noise mitigation. Thirdly, for this
framework to be useful in practice, we would need to scale-up this
approach and perform tests on larger devices, allowing circuits of
arbitrary width and depth to be compiled with a single noise model
trained on a given device. Finally, it is worth exploring whether
other machine learning techniques (for instance, reinforcement
learning) are useful for addressing the noise-minimization problem.
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