md_poly: A Performance-Portable Polyhedral Compiler Based on Multi-Dimensional Homomorphisms

Ari Rasch (Advisor: Sergei Gorlatch)

a.rasch@wwu.de

University of Muenster, Germany

1 Motivation

Programming state-of-the-art parallel architectures such as multi-core CPU and many-core GPU is challenging. For high performance, the programmer has to optimize its source code for the complex hardware of modern parallel devices which are characterized by deep and complex core and memory hierarchies. Moreover, for portable performance over such architectures, the programmer has to consider that architectures may differ significantly in their characteristics, e.g., the number of cores and sizes of caches.

Polyhedral compilers [3, 25] simplify parallel programming by automatically parallelizing sequential program code, e.g., implemented in the C programming language. For this, a polyhedral compiler extracts from the sequential program code the so-called *polyhedral model*—a formal representation of the code, based on concepts from mathematical geometry, which captures important information, e.g., the number of loop iterations and memory access relations (read and/or write). The extracted model is then optimized by the polyhedral compiler via so-called affine transformations which enable important optimizations, e.g., tiling.

State-of-the-art polyhedral compilers have a major weakness: they are usually optimized toward only a single particular architecture (e.g., only GPU) and thus, they often fail to achieve high performance on other architectures (e.g., multi-core CPU). For example, we demonstrate experimentally that the popular polyhedral compiler PPCG (Polyhedral Parallel Code Generator) [25] achieves lower relative performance on Intel CPU than on NVIDIA GPU as compared to hand-optimized approaches. Moreover, our experiments show that PPCG sometimes fails to achieve high performance also on its target architecture (NVIDIA GPU), because its generated code lacks important optimizations, e.g., efficiently exploiting fast memory resources.

In this paper, we present our work-in-progress results for *md_poly*—a novel compiler that generates portable, high-performance code for CPUs and GPUs. For this, *md_poly* combines polyhedral techniques with the algebraic formalism of *Multi-Dimensional Homomorphisms (MDH)* [14, 17] and their code generation approach in OpenCL—the standard for uniformly programming different architectures (e.g., CPU and GPU). We demonstrate that the mathematical program representation of polyhedral compilers (a.k.a. *polyhedral model*) can be automatically transformed into an equivalent MDH representation; this MDH representation is suitable for generating high-performance program code that is performance portable over different architectures [17]. From a theoretical perspective, our findings show that regarding code generation, the recent formalism of MDHs is more expressive than the state-of-the-art polyhedral approach, because the MDH representation captures more information relevant for optimization (as we show in this paper).

Our preliminary experiments with two benchmarks—Gaussian Convolution and Matrix Multiplication—shows encouraging results: speedups up to $7 \times$ on Intel CPU and $3 \times$ on NVIDIA GPU over the state-of-the-art polyhedral compiler PPCG and hand-optimized vendor libraries on real-world input data from deep learning.

2 Overview

Figure 1 demonstrates the overview of *md_poly*’s internal design. Starting from a sequential C program, we first extract in step \(\ref{fig:overview} \) in the figure the polyhedral model—this is the same step in all C-based polyhedral compilers (e.g., PPCG)—using the *Polyhedral Extraction Tool (pet)* [24]. Afterwards, we transform in step \(\ref{fig:overview} \) the extracted polyhedral model into an equivalent MDH representation [14]—this transformation is the focus of this paper and discussed in the next section. The MDH representation is suitable for generating portable high-performance code: we use the MDHs’ code generator (MDH-CG) [17] in step \(\ref{fig:overview} \) to transform the MDH representation into an automatically optimizable (auto-tunable) OpenCL code—the standard for uniformly programming different architectures (e.g., CPU and GPU); the generated code is then auto-tuned in step \(\ref{fig:overview} \) for different target architectures and input sizes using our *Auto-Tuning Framework (ATF)* [15, 16]. We execute the automatically generated and auto-tuned OpenCL code in step \(\ref{fig:overview} \) using our dOCAL framework [13, 18].

3 Approach

The focus of this paper is the transformation of the extracted polyhedral model into an equivalent MDH representation (step \(\ref{fig:overview} \) in Figure 1).

In the following, we first briefly recapitulate the definitions of MDHs and their corresponding Domain-Specific Language (DSL) [14]. Afterwards, we demonstrate how the polyhedral model can be transformed into an equivalent expression in the DSL for MDHs.
3.1 Multi-Dimensional Homomorphism

Multi-Dimensional Homomorphisms (MDHs) are formally defined as follows.

Definition 3.1. Let \(T \) and \(T' \) be two arbitrary data types. A function \(h : T[N_1] \ldots [N_d] \rightarrow T' \) on \(d \)-dimensional arrays of size \(N_1 \times \ldots \times N_d \) and with elements in \(T \) is called a Multi-Dimensional Homomorphism (MDH) iff there exist combine operators \(@_1, \ldots, @_d : T' \times T' \rightarrow T' \), such that for each integer \(k \in [1,d] \) and arbitrary, concatenated input array \(a \oplus_k b \) in dimension \(k \), the homomorphic property is satisfied:

\[
(a \oplus_k b) = h(a) \oplus_k h(b)
\]

In words: the value of \(h \) on a concatenated array in dimension \(k \) can be computed by applying \(h \) independently to array’s parts \(a \) and \(b \), and then combining the results by combine operator \(@_k \).

We express MDHs using their high-level Domain-Specific Language (DSL) [14], as follows. Every MDH \(h \) is uniquely determined by its combine values \(@_1, \ldots, @_d \) and its behavior \(f \) on scalar values (i.e., \(f(a[0] \ldots [0]) = h(a) \) for every \(a \in T[1] \ldots [1] \)). This enables expressing \(h \) using the \(md_hom \) parallel pattern [14] which takes these functions as parameters:

\[
h = md_hom(f, (\oplus_1, \ldots, \oplus_d))
\]

\[
= \oplus_1 \circ \ldots \circ \oplus_d (f(a[i_1] \ldots [i_d]))
\]

We demonstrate the usage of \(md_hom \) – the basic building block of MDHs’ DSL – based on the example of Matrix Multiplication (MatMul):

\[
\text{MatMul} = \text{out_view(MatMul)} \circ md_hom(\oplus_1, \oplus_2, \oplus_3) \circ \text{in_view(MatMul)}
\]

The formula shows MatMul expressed as an instance of the \(md_hom \) parallel pattern. We first fuse the domain-specific input of MatMul – two matrices \(A \in T[M \times K] \) and \(B \in T[K \times N] \) of type \(T \) (e.g., \(T=\text{float} \) or \(\text{double} \)) – to a 3-dimensional array comprising pairs of type \(T^2 \). For this, we use pattern \(\text{in_view} \) which MDHs’ DSL provides to uniformly prepare a domain-specific input for \(md_hom \). For MatMul, its view pattern \(\text{in_view(MatMul)} \) is an alias for \(\text{in_view}(A,B)(i,j,k) \) \((A[i][k], B[k][j]) \); it takes as input the two matrices \(A \) and \(B \) and the array indices \(i,j,k \); it yields the pair \((A[i][k], B[k][j]) \). After fusing MatMul’s two input matrices via \(\text{in_view(MatMul)} \), we apply the scalar function \(f=\ast \) (multiplication) of MatMul’s \(md_hom \) expression to each output pair \((A[i][k], B[k][j]) \) of \(\text{in_view(MatMul)} \), and we combine the obtained results in dimension 1 and 2 by concatenation (i.e., \(@_1, @_2 = \ast \)), and in dimension 3 by addition (\(@_3 = + \)). The results are stored in result matrix \(C \), using \(\text{out_view(MatMul)} \) – an alias for pattern: \(\text{out_view}(C)(i,j) \) \((C[i][j]) \). The pattern takes the output matrix \(C \) and indices \(i \) and \(j \); it straightforwardly stores the computed results at position \(i,j \) in matrix \(C \) at position \(i,j \). In the MDH formalism, output views enable conveniently implementing different variants of computations, e.g., storing the results of computation MatMul as transposed in result matrix \(C \) – by only swapping indices \(i \) and \(j \) when defining the access pattern on output matrix \(C \) \(\text{out_view}(C)(i,j)(C[j][i]) \)

3.2 Transformation: Polyhedral Model to MDH Representation

We show how the polyhedral model can be automatically transformed into an equivalent representation in the MDHs’ DSL (step 2 in Figure 1) consisting of patterns \(md_hom \), \(in_view \), and \(out_view \).

For brevity, we present in this paper our transformation using an only particular but important example: MatMul as implemented in Listing 1. We will present our general transformation – from the polyhedral model of an arbitrary, sequential C program (i.e., which does not necessarily represent MatMul) to a corresponding MDH representation – in future work.

3.2.1 Polyhedral Model

We extract the polyhedral model from the sequential implementation of MatMul (Listing 1) straightforwardly using the Polyhedral Extraction Tool (pet) [24] (step 1 in Figure 1). The model’s two basic building blocks are the so-called iteration
domain and access relations; we discuss both briefly in the following.

Iteration Domain An iteration domain represents the statements in the sequential C program (in the example of Listing 1, the statements are: S1 in line 4 and S2 in line 6). Each statement is dependent on the particular values of the enclosing loop iterators – iterators i and j in case of statement S1, and iterators i, j, and k in case of statement S2. Consequently, the iteration domain of MatMul is (in polyhedral notation [25]):

\[(M, N, K) \rightarrow \{ S1(i,j) \mid 0 \leq i < M, \ 0 \leq j < N \} \]
\[(M, N, K) \rightarrow \{ S2(i,j,k) \mid 0 \leq i < M, \ 0 \leq j < N, \ 0 \leq k < K \} \]

Access Relation The access relation describes how data is accessed by statements – read, write, or read/write. For example, in case of MatMul, arrays A and B represent the input matrices; both are read only in Listing 1. In contrast, matrix C is read as well as written in the listing. Consequently, the access relation of MatMul is defined as follows (in polyhedral notation):

Read accesses: \[S2(i,j,k) \rightarrow A[i,k], B[k,j] \]
Write accesses: \[\text{void} \]
Read/Write accesses: \[S1(i,j) \rightarrow C[i,j] \]

3.2.2 MDH Representation

We use the information provided by polyhedral model’s iteration domain and access relation to automatically generate a corresponding MDH representation, consisting of patterns in_view, out_view, and md_hom (introduced in Section 3.1).

Input View As input parameters of pattern in_view, we have to extract from the polyhedral model the following information:

1. **input data** (matrices A, B, and C for MatMul);
2. **access indices** (i, j, k for MatMul);
3. **accessed data** (C[i][j], A[i][k], and B[k][j]).

We can extract parameters 1.-3. from polyhedral model’s access relation – all data with read or read/write accesses are considered as input data.¹

Output View For pattern out_view, we need parameters:

4. **output data** (matrix C in case of MatMul);
5. **access indices** (i, j for MatMul);
6. **accessed data** (C[i][j]).

Analogously as for parameters of pattern in_view, we can extract parameters 4.-6. from polyhedral model’s access relation; all data with write or read/write accesses are considered as output data.

Pattern md_hom As parameters for pattern md_hom, we need:

1. **scalar function** f;
2. **combine operators** @1,...,@d;

Scalar Function Listing 2 shows the scalar function f of MatMul’s md_hom expression when generated automatically according to MatMul’s polyhedral model. The function’s basic building blocks are statements S1 (line 4) and S2 (line 6) taken from Listing 1 (lines 4 and 6); we extract both statements from polyhedral model’s iteration domain.

We set variables with read or read-write accesses (for MatMul, these are: A[i][k], B[k][j], and C[i][j] – see Section 3.2.1) – as the arguments of function f (line 2 in Listing 2); variables with write access – not existent in the computation of MatMul – would be declared and zero initialized at the beginning of scalar function f’s definition. We return the value of variables with write or read-write accesses at the end of f’s function definition (line 8 in Listing 2). Polyhedral model’s access relation provides all information about variables’ access types (see Section 3.2.1) that are required for generating scalar function f.

Note that the automatically-generated scalar function f of MatMul’s md_hom expression in Listing 2 is different from the hand-implemented scalar function for MatMul in Section 3.1: the automatically-generated function in Listing 2 performs also addition + (line 6), while the hand-implemented scalar function in Section 3.1 is only multiplication *. This is because combine operators different from concatenation + (e.g., combine operator *, as in case of MatMul – see Formula 1) cannot be extracted automatically from the polyhedral model, as discussed in the following.

```
T_OUT f( int i, int j, int k, /* default parameters */ ) {
  T_R_1 A[i,k], T_R_2 B[k,j], T_RW_1 C[i,j] ) ( 1
    if( k==0 ) 2
      C.i,j = 0; 3
      S1 4
    C.i,j += A.i,j * B.k,j; 5
5
return C.i,j; 6
7
Listing 2. Scalar function of MatMul.
```

Combine Operators In general, combine operators different from concatenation + (e.g., addition +) cannot be captured in (and thus extracted from) the polyhedral model [6, 19, 20] – automatically identifying such combine operators would require a complicated semantic analysis of the sequential code in Listing 1. We provide two different solutions to circumvent this problem: 1) ignoring the parallelism potential in such dimensions (e.g., as in PPCG); for the dependence analysis, we use polyhedral tool isl [23] (in exactly the same way.

¹ Note that matrix C is used as both output and also input, because the implementation in Listing 1 performs an additional initialization of matrix C (in line 4), which is not expressed in the MDH formula for MatMul in Section 3.1 for simplicity.
as PPCG); 2) requesting combine operators explicitly from the user; for example, in case of MatMul, the user annotates the code in Listing 1 with the following (OpenMP-like [5]) directive: `#mdh parallel (++,++,+,+;C[i][j]). For a fair comparison with PPCG, we experiment in Section 4 with solution 1).

Note that MDH approach requires rectangular iteration domains for combine operators [14], e.g., where loops in the sequential C program are incremented by 1 after each loop iteration. If loops’ iteration domain is not rectangular, we transform the domain via affine transformation – using isl – to an equivalent, rectangular form [1].

3.3 Polyhedral Model vs. MDH Representation

We have shown in the previous subsection that the polyhedral program representation can be automatically transformed into a corresponding MDH representation. For brevity, we have presented this transformation only for MatMul; we will present our general transformation – for arbitrary programs (i.e., which might be different from MatMul) – in future work.

Compared to a hand-implemented MDH representation, an MDH representation that is automatically generated from the polyhedral model has restrictions: combine operators different from concatenation (e.g., addition +, as in case of MatMul) cannot be set in the generated MDH representation, because such combine operators are not explicitly represented in the polyhedral model (as discussed in Section 3.2.2). This restriction is an inherent weakness of the polyhedral model, because it inhibits parallelization in non-concatenation dimensions and thus, it can negatively affect performance (as we show in detail in future work).

In contrast, every MDH representation (automatically generated as well as hand implemented) can be automatically transformed into an efficient polyhedral representation, because the MDH representation captures all information represented in the polyhedral model.

Summarizing, the MDH representation expresses more information relevant for high-performance code generation than the state-of-the-art polyhedral model. We will demonstrate this – MDH formalism is more expressive for code generation than the polyhedral model – formally and in more detail in future work.

4 Experimental Evaluation

All our experiments can reproduced using our artifact implementation [2].

To auto-tune and execute our generated OpenCL code (steps 4 and 5 in Figure 1), the user passes to md_poly conveniently via compiler flags: i) the data types of the in- and output (e.g., f16x4_t); ii) the input sizes (e.g., M,N,K in case of MatMul).

Figure 2 shows the speedup of md_poly’s automatically generated, optimized, and executed OpenCL code (steps 1-5 in Figure 1) – for benchmarks Gaussian Convolution (left) and Matrix Multiplication (right) (for Gaussian, we implement the most-recent version in [21]) – over PPCG and hand-optimized vendor libraries (VL). As VLs, we use for Gaussian Convolution libraries Intel MKL-DNN [7] and NVIDIA cuDNN [10]; for Matrix Multiplication, we use Intel MKL [8] and NVIDIA cuBLAS [11]. We experiment on both Intel Xeon E5-2640v2 CPU and NVIDIA V100 GPU. As input sizes, we use i) real-world sizes (abbreviated with RW in the figure) from deep learning, and ii) sizes that are preferable for PPCG (abbreviated with PP). For example, we use for Gaussian a real-world input size of 1×512×7×7×512 taken from the deep-learning framework TVM [4], and for Matrix Multiplication, we use input matrices of size 10x64 and 64x500 which are repeatedly called in the Caffe deep-learning framework [9]. As PP sizes, we use for Gaussian 1x1x4096x4096x1 and for Matrix Multiplication, we use square input matrices of sizes 1024. We auto-tune both the programs generated by md_poly and the optimization parameters of PPCG for 48h – the wall time of our system – using the Auto-Tuning Framework (ATF) [15].

![Figure 2](image)

We observe competitive and often better performance of md_poly than both PPCG and vendor libraries. As compared to PPCG, md_poly’s better performance is because our generated OpenCL code has more tunable parameters than PPCG, e.g., parameters for enabling/disabling using OpenCL’s fast local and private memory resources – this is discussed in detail in [17]; thereby, we enable a more fine-grained optimization of our generated code. In comparison to vendor libraries, we rely on auto-tuning, while the libraries use hand-crafted heuristics.

In future work, we will compare to further polyhedral compilers, e.g., TensorComprehensions [22], and we will present and discuss in more detail the efficiency of md_poly over...
polyhedral compilers for all benchmarks from the popular PolyBench [12] suite which is specifically designed toward performance evaluation of polyhedral compilers.

5 Conclusion

We present md_poly – a novel compiler that automatically generates portable high-performance code for CPU and GPU from sequential C programs. For this, md_poly combines the recent algebraic formalism of Multi-Dimensional Homomorphisms (MDHs) and their code generation approach in OpenCL with the state-of-the-art polyhedral model – a mathematical program representation based on concepts from mathematical geometry. We show that the polyhedral model can be automatically transformed into a corresponding MDH representation which is amenable for generating high-performance code for different architectures. From a theoretical perspective, our findings show that the MDH formalism is more expressive than the polyhedral approach regarding code generation, because the MDH representation captures more information relevant for optimization.

Our preliminary experiments demonstrate that md_poly achieves better performance than both: i) state-of-the-art polyhedral compiler PPCG – by relying on a more fine-grained auto-tuning process; ii) hand-optimized vendor libraries (such as Intel MKL and NVIDIA cuBLAS) – by relying on auto-tuning rather than hand-crafted heuristics.

References