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1 PROBLEM & MOTIVATION
The future of healthcare is decidedly dependent upon precision
medicine. Precisionmedicine takes into account the genetic makeup
of an individual to develop customised medicines and doses that
are effective and safe (Fig. 1). The key to precision medicine is
DNA sequence analysis. DNA sequence analysis is also beneficial
in fields such as epidemiology, virology, forensics and evolutionary
biology. Over the last two decades, DNA sequencing machines have
evolved from >500kg machines to pocket-sized devices such as the
87g Oxford Nanopore MinION (Fig. 2). However, software tools that
analyse the terabytes of data produced by sequencing machines are
still dependent on high-performance or cloud computers, which
limits the utility of portable sequencers (Fig. 2).

The ultra-portable MinION sequencer is not constrained to lab-
oratory environments and scientists have performed in-the-field
sequencing in exotic locations, for instance, in West Africa during
the 2013–2016 Ebola virus outbreak [21], at rural locations in Brazil
during the Zika virus outbreak [4], in the middle of jungles, in the
arctic [9] and even on the International space station [2]. During
the ongoing Novel Coronavirus outbreak (COVID-19), the portable
MinION sequencers have proven beneficial especially for small
decentralised laboratories around the world [18]. However, the true
potential of this portable DNA sequencer is currently limited due
to the reliance on high-performance computers for analysis. For in-
stance, the data generated at remote West Africa during Ebola virus
sequencing had to be transferred to high-performance computers
in Europe for analysis. Data had to be transferred through a mobile
Internet connection which was expensive and time-consuming due
to connectivity issues [21]. Technologies to perform the analysis
in-the-field would have been valuable in such circumstances, not
only to reduce cost but also to obtain results quickly, allowing for
faster treatment and potentially saving lives.

The major causes behind DNA sequence analysis being per-
formed on high-performance computers are as follows:

(1) State-of-the-art DNA sequence analysis software tools are
typically designed and developed by biologists. Most biolo-
gists working in the area of DNA sequence analysis, have ac-
cess to near-unlimited computational and memory resources
(i.e. terabytes of RAM) in their research facilities. Conse-
quently, those software tools are not optimised in terms of
efficient resource utilisation.

(2) DNA sequence analysis workflows are extremely complex.
A single workflow is a pipeline of a number of extremely
complex software tools which are run sequentially. Each tool
is a collection of dozens of algorithms, containing numerous
heuristically determined parameters. A subtle change in a pa-
rameter during an optimisation effort by a computer scientist
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Figure 1: Precision (personalised) medicine. The amalgama-
tion of pharmacology (study of drugs) and genomics (study
of DNA sequence) to develop customised treatments that are
tailored to the genetic makeup of an individual.
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Figure 2: Current state of DNA sequencing and DNA
sequence analysis. DNA sequencing has become ultra-
portable, however, DNA sequence analysis is still done on
supercomputers.

may severely affect the accuracy, rendering it unacceptable
by biologists.

(3) The very few previous research attempts on accelerating and
optimising such tools have focused only on sub-components,
which are just a fraction of a tool (i.e. Smith-Waterman al-
gorithm). While significant speedups have been recorded
for some of these optimised sub-components, those optimi-
sations have rarely been integrated into an actual software
tool/workflow, most probably due to a limited benefit to the
global efficiency when integrated.

For the first time, we optimise a complete nanopore DNA se-
quence analysis workflow to execute on portable and lightweight
embedded systems. Our work performs the full DNA sequence



analysis with terabytes of data on portable devices such as laptops,
tablets or mobile phones. Importantly there is no impact on the
accuracy of the results.

2 BACKGROUND & RELATEDWORK
2.1 DNA Sequencing and Analysis
Deoxyribonucleic acid (DNA) is the blueprint of life which encodes
instructions and data for the development and function of a liv-
ing being. DNA is a molecule made of a long chain of millions
of building blocks called nucleotide bases (or simply called bases).
There are four types of DNA nucleotide bases: adenine (A), cy-
tosine (C), guanine (G) and thymine (T). Every cell of a human
being has 23 pairs of DNA molecules (46 in total) which are known
as chromosomes. The full nucleotide base sequence of all chro-
mosomes is called the genome. The human genome is around 3.2
gigabases (Gbases). The process of reading fragments of contigu-
ous DNA bases is called sequencing, and the resulting strings of
bases are called reads. The machines that perform DNA sequencing
are called sequencers. Third-generation sequencers are the latest
and portable nanopore MinION sequencers belong to this third-
generation. Third-generation sequencers produce reads that are of
10-20 kilobases (Kbases) lengths on average (could vary from 1000
bases to >1M), and these reads are known as long reads.

Computational analysis is performed on reads output from the
sequencers to discover information of clinical importance. The
reads are aligned to a reference genome, a representative example
of the genome of the species, and the differences in the reads to the
reference (genetic variants) are of interest. Unfortunately, the se-
quencing machines produce errors (5%-10% in nanopore sequencers
[27]) and the subsequent analysis step called polishing corrects
the errors up to 99.8% [11] and identifies genetic variants (referred
to as variant calling) or base modifications such as methylated
bases (referred to as methylation calling) amongst sequencing
errors. The polishing step requires multiple reads covering every
position of the reference genome (more than 20X coverage) and
the raw sensor output of sequencer (called raw signal) for every
read. The data volume of all the reads and associated raw signals
for a human genome sample typically exceeds a terabyte.

2.2 An Example DNA Sequence Analysis
Workflow

The example nanopore DNA sequence analysis workflow for methy-
lation calling shown in Fig. 3 is a pipeline of five different software
tools. Out of those five tools, Minimap2 alignment [13] (software
2) and Nanopolish methylation calling [24] (software 5) are the two
computationally challenging steps (based on our analysis in Sec-
tion 3.2). The background of those two tools is elaborated in this
subsection.

Minimap2 is the gold standard tool amongst the genomics com-
munity for aligning long reads to a reference genome. Minimap2
constructs a hash table (called the index) out of the reference
genome which is subsequently accessed very frequently to deter-
mine potential locations that a query read maps on the reference
genome. Then the read is aligned base-by-base to those identified
regions on the reference genome through the application of the dy-
namic programming alignment algorithm called Suzuki–Kasahara
formulation [25]. The alignment scores from the alignment are
used in conjunction with many parameters (i.e. the fraction of the
read that contains repetitive DNA sequences) to determine the best

Software 1: Fast5 index

Software 2: Minimap2 alignment

Software 3: Samtools sort

Software 4: Samtools index

Software 5: Nanopolish methylation calling

Reads Raw signals

Figure 3: An example nanopore DNA sequence analysis
workflow for methylation calling.

alignment and a mapping quality score that represents the prob-
ability of the alignment accuracy. The hash table data structure
itself consumes about 8 GB of memory (RAM). The typically RAM
consumption is around 12 GB on average when memory is allo-
cated for internal data structures (i.e. dynamic programming tables).
However, the peak RAM can occasionally exceed 16 GB depending
on the characteristics of data such as the length of the reads.

Nanopolish is the most popular software package amongst the
nanopore community for the polishing step, which is methylation
calling in this example. Nanopolish methylation calling tool takes
the reads, their alignments to the reference genome and the raw sig-
nal of each read as the input. Initially, the raw signal is segmented
in the time domain based on sudden jumps in the signal and these
segments are known as events. The events are then aligned to a hy-
pothetical signal model using an algorithm called Adaptive Banded
Event Alignment (ABEA). The output of ABEA and alignment de-
tails of reads to the reference genome are sent through a Hidden
Markov Model (HMM) to detect methylated bases.

2.3 Related Work
Third-generation nanopore DNA sequence analysis is a relatively
new field (first nanopore MinION emerged in 2015). Despite the
short time, many software tools have been rapidly developed by
biologists for nanopore DNA sequence analysis. However, works on
accelerating those software or even those exploring computational
bottlenecks are very limited. The open source Clara Genomics li-
brary from NVIDIA [19] and work from Zonghao Feng Et Al. [5] are
two examples. Clara Genomics accelerates a few sub-components
in nanopore DNA sequence analysis workflows (i.e. all-vs-all read
mapping and partial order alignment) for denovo assembly, the pro-
cess of assembling a genome from the scratch for a novel species
when a high-quality reference is unavailable. Work by Feng Et
Al. [5] accelerates core components of Minimap2 alignment soft-
ware with the simultaneous use of a GPU and an Intel Xeon Phi
co-processor, however, the source code is not openly available.

Second-generation DNA sequencing being relatively old com-
pared to third-generation (available for more than a decade), several
acceleration efforts have been attempted on associated software.
Some examples are: GPU acceleration of the core algorithm called
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Smith-Waterman using GPU [15, 17]; GPU accelerated aligners such
as SOAP3 [14], BarraCUDA [12], MUMmerGPU [23]; CPU acceler-
ated variant calling tools such as BALSA [16]; FPGA based acceler-
ation of sub-components of tools [1, 10, 20]; and, FPGA based com-
mercial accelerators such as DeCypher [26] and [3]. Nevertheless,
tools and characteristic of data related to second-generation DNA
sequence analysis are significantly different from third-generation
DNA sequence analysis.

3 UNIQUENESS OF THE APPROACH
3.1 Overview of our Method
We optimise a complete nanopore DNA sequence analysis workflow
to run on embedded systems/SoC, in contrast to previous work that
optimises tiny sub-components. For optimisations, we simultane-
ously exploit in-depth knowledge of: computer systems (memory
hierarchy, interfacing/buses, multi-cores, instruction set architec-
ture, threads, disk caches, virtual memory, etc); and, biology (DNA,
chromosomes, genome, repeat regions, read lengths, sequencing
errors, sequence alignment, variant calling, methylation calling,
etc.); to ensure efficient computational resource utilisation and at
the same time the accuracy of the results.

The overview of our method is in Fig. 4. We analyse the workflow
and identify the nature of the workloads (CPU intensive, memory-
intensive, I/O intensive) in different portions of theworkflow (Fig. 4).
Then we systematically re-structure the software and optimise bot-
tlenecks to execute on lightweight System-on-Chip equipped with
embedded GPU (Fig. 4). Throughout the steps, we synergistically
use the characteristics of biological data, associated algorithms, and
computer software and hardware architecture for re-structuring
and optimising (Fig. 4). Major bottlenecks are resolved via CPU
optimisations, parallelisation for GPU architectures, GPU optimi-
sations (exploiting data access patterns for better cache usage and
memory coalescing), heterogeneous CPU-GPU work-load balanc-
ing, etc. Importantly, our re-structuring and optimisations do not
alter the accuracy of the results.

3.2 Applying to an Example Workflow
In this subsection, we demonstrate how the above methodology
was applied to the example workflow discussed in section 2.2. Out
of the five software tools, our analysis revealed thatMinimap2 align-
ment and Nanopolish methylation calling are the computationally
challenging steps, former being memory intensive (i.e. consuming
12 GB of RAM unavailable on an embedded system) and latter being
computationally intensive (i.e. very high runtime). Optimisations
we performed to circumvent these challenges are briefly explained
below.

As stated in section 2.2, around 8GB of RAM in Minimap2 is
consumed by the index for the reference genome (hash table). We
employed a divide and conquer strategy where the index was split
into several partitions (number of partitions is decided upon avail-
able RAM) and reads were repeatedly mapped to each partition.
Then, we proposed and implemented a merging strategy to com-
bine the results from each partition. Note that, naively splitting the
index reduce the accuracy to an unacceptable level (i.e. spurious
mappings and incorrect mappings qualities). Our unique strategy is
based on a careful investigation of causes behind accuracy loss and
circumventing those identified causes to achieve the same accuracy
as the original software. Explaining those causes and remedies re-
quire a detailed background of characteristics of data such as repeat
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Figure 4: Simplified overview of methodology. Modern com-
puter systems and DNA sequence analysis workflows are
both very complex. The domain knowledge from both is
exploited to efficiently utilise computing resources without
any impact on accuracy.

regions and chimeric reads and are not discussed here. The findings
have been published at [7].

tx=0,y=0 tx=1,y=0 tx=WX-1,y=0 block0  read0

tx=0,y=1 tx=1,y=1 tx=WX-1,y=1 block1  read1

tx=0,y=2 tx=1,y=2 tx=WX-1,y=2 block2  read2

tx=0,y=3 tx=1,y=3 tx=WX-1,y=3 block3  read3

tx=0,y=4 tx=1,y=4 tx=WX-1,y=4 block4  read4

tx=0,y=n-2 tx=1,y=n-2 tx=WX-1,y=n-2 blockn-2  readn-2

tx=0,y=n-1 tx=1,y=n-1 tx=WX-1,y=n-1 blockn-1  readn-1

WX (bandwidth W) 

k0 k1 k2 k3 k4 k5

w
e0
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12

ref

ev
en

ts

k0 k1 k2 k3 k4

w
e0
e1
e2
e3
e

ref

n 
(n

um
be

r o
f r

ea
ds

 in
 th

e 
ba

tc
h)

Figure 5: GPU parallelisation of ABEA algorithm. The GPU
thread grid (left) and dynamic programming tables of two
example reads (right). The GPU processes multiple reads in
parallel with a thread block assigned to each read. Individual
threads in a thread block compute the cell scores (of a band
in the dynamic programming table) in parallel.

Nanopolish had a very large execution time and our profiling
revealed that ∼70% of execution time is for the ABEA algorithm.
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We parallelised ABEA to run on GPU. ABEA is not an embarrass-
ingly parallel algorithm, however, we carefully analysed data de-
pendencies and restructured the algorithm to expose parallelism
to sufficiently occupy GPU cores (Fig. 5). We further improved the
GPU performance by studying data access patterns and laying out
data for better cache usage and memory coalescing. We also used
shared memory (programmer managed cache in GPU) to place fre-
quently accessed data blocks. When aforementioned optimisations
led to higher GPU core utilisation, GPU memory management (i.e.
cudamalloc provided by NVIDIA CUDA runtime) became the next
bottleneck, which was remedied by writing a custom lightweight
memory manager. The overall performance of ABEA was further
enhanced through a heterogeneous CPU-GPU work-load balancing
strategy capable of determining the suitability of a given read for
CPU or GPU and assigning it appropriately during execution. Next,
I/O became a bottleneck and was minimised by interleaving I/O
with processing. Note that, original Nanopolish was unsuitable for
GPU programming paradigm and we had to completely re-engineer
the tool, which resulted in separate software tool called f5c. More
details are in our pre-print [6].

4 RESULTS & CONTRIBUTIONS
4.1 Results of Individual Tool Optimisations
The amount of RAM required in the system to run the original
Minimap2 was ∼12GB. This value was reduced to ∼8GB by splitting
the reference index into two partitions using the strategy presented
in section 3.2. By splitting the reference into 4, 8 and 16 parts,
RAM requirement could further be reduced to ∼6GB, ∼4GB and
∼2GB respectively (Fig. 6a). Our merging strategy ensured that
the accuracy is unaffected despite the number of index partitions,
demonstrated by accuracy curves lying on top of the curve for
original Minimap2 in Fig. 6b.
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Figure 6:Minimap2 optimisation results

The computationally expensive ABEA algorithm when paral-
lelised and optimised for the GPU ran ∼3-5X faster compared to a
heavily optimised multi-threaded CPU version (Fig. 7a). This ∼3-5X
speedup includes all overheads such as CPU-GPU data transfer, ker-
nels invocations etc. The breakdown of the speedup is shown in Fig.
7a. Note that the CPU implementation of ABEA in Fig. 7a is after
it was heavily optimised for efficient multi-core CPU utilisation.
The original implementation in Nanopolish was not optimised for
efficient multi-core execution.

Re-engineered version of Nanopolish which includes all our op-
timisations (termed f5c) could successfully run on the Jetson TX2
SoC (8GB RAM) and the laptop (16 GB RAM), while original Na-
nopolish crashed during runtime due to high memory usage (Fig.

7b). In addition to SoC and laptops, the above optimisations equally
benefitted HPC where f5c was ∼9X faster with ∼6X peak RAM
reduction (Fig. 7b).
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Figure 7: Nanopolish methylation calling optimisation re-
sults. Soc, lapL, lapH, ws and HPC refer to Jetson TX2, low-
end laptop, high-end laptop, workstation and server respec-
tively.

4.2 Results of Overall Workflow
After our optimisations, methylation calling workflow can now
be executed on lightweight and inexpensive System-on-Chips (e.g.
NVIDIA Jetson Nano module, mobile phone, tablet etc. Note that
without our re-structuring and optimisations, it is impossible to
run the analysis workflow on such a limited memory system due
to peak memory consumption being more than 16 GB (Fig. 8).
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Figure 8: DNA sequence analysis on a SoC is now possible!!

In addition to the execution, it is also demonstrated that the
presented strategy allows real-time processing of data output from
the nanopore sequencer, on a tiny SoC equipped with an embedded
GPU (Fig. 9). That is, optimised system is capable of keeping up
with a Nanopore sequencer, processing the data fast enough to
produce results by the end of a DNA sequencing run (time that
the sequencer operates). On a Jetson Nano SoC (4 GB RAM), the
complete methylation workflow on a complete Nanopore MinION
dataset executed in less than 35 hours (Fig. 9). This is less than the
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48-hour runtime taken by the MinION sequencer to produce the
data for use by our system. Thus, if the processing is performed
while the sequencer is operating, we could get the full results just
after the sequencing run completes.
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Sequencing on
MinION (data
generation)

Time (hours)

MinION sequencing run File transfer
Fast5 index Minimap2 alignment
Samtools sort Samtoool index
Nanopolish methylation calling

Figure 9: Real-time processing capability

4.3 Contributions and Impact
Our work realises performing a complete Nanopore DNA sequence
analysis workflow on an embedded system or an SoC. Such a light-
weight and portable, yet accurate embedded DNA analysis device,
when connected to a portable Nanopore DNA sequencer, can enable
full DNA sequence analysis in-the-field (such as in remote locations
without network connectivity) and point-of-care. Embedded sys-
tems we designed are fully functional prototypes that they are being
actively used at Garvan Institute of Medical Research in Sydney for
methylation calling on nanopore samples and have won the best
poster award at Australasian Genomic Technologies Association
Conference 2019, a major bioinformatics conference. Also, our work
has been retweeted by multiple times amongst the bioinformatics
community, including Oxford Nanopore and NVIDIA embedded.

Minimap2 is the most popular state-of-the-art long-read aligner
and our partitioning and merging based optimisations toMinimap2
have been integrated into the original GitHub repository. Our strat-
egy has been published in Nature Scientific Reports [8] and has
received an Altmetric attention score of 89 and has been featured in
9 news articles. Nanopolish is very popular amongst the nanopore
community and many CPU optimisations we did have been inte-
grated into the original repository. Our optimised GPU implementa-
tion available as open-source at https://github.com/hasindu2008/f5c
has received compliments from users whowere pleasantly surprised
by the 10X performance improvement. These optimisations are in
our pre-print at [6]. Also, this work set the foundations to the de-
sign and development of the Android Application for nanopore
data processing for which the pre-print is available at [22].
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