
ESEC/FSE: G: On the Impact and Defeat of Regex DoS
James C. Davis (Advisor: Dongyoon Lee)

Virginia Tech, USA
davisjam@vt.edu

1 Problem and Motivation
From their obscure origins in neuron modeling [26], regular expres-
sions (regexes) have emerged as a widely used string manipulation
tool. Regexes are commonly used to bring order to unstructured
text, e.g., by web services to sanitize untrusted input. Unfortunately,
regexes are risky in most mainstream programming languages:
most regex engines have worst-case exponential matching behav-
ior. This worst-case property has been known for decades [2, 39],
and has been proposed as a vector for an algorithmic complexity
attack [13]. Indeed, several major services have had outages caused
by this behavior, including Stack Over�ow [19] and Cloud�are [24].
But it is not clear whether these slow regexes are common enough
to comprise a serious security concern. Any change to fundamental
aspects of our programming languages requires a �rm foundation,
not anecdotal evidence. Furthermore, if Regex Denial of Service
(ReDoS) is a common threat in practice, how ought it be defeated?
We have conducted empirical studies to understand the potential

impact of ReDoS in practice. ReDoS is a real-world problem; up to
10% of regexes may comprise ReDoS vectors. We have performed
the �rst evaluations of the e�ectiveness of existing ReDoS defenses;
we found them wanting in completeness, utility, or performance.
We propose a novel defense based on selective memoization. Our
approach o�ers provable security guarantees for 95% of regexes,
and constant space costs for typical regexes.

2 Background and Related Work
This section explains why regexes have super-linear worst-case
behavior in many programming languages, how this property can
be exploited for Regex Denial of Service (ReDoS) attacks, the lim-
itations of empirical regex research to date, and existing ReDoS
defenses.

Regexes and regex engines Regexes are a widely-used tech-
nique for solving string matching problems [21]. Although regexes
may be used in low-risk, ephemeral ways, e.g., during program com-
prehension [38], regexes are also used in business-critical contexts.
Speci�cally, they are commonly used in web servers to validate
untrusted input. They act as a defensive �lter to prevent illegiti-
mate data from poisoning a program. But are regexes themselves a
potential vector for abuse? Quis custodiet ipsos custodes?
A regex is a notion and a notation for concisely describing a set

of strings that share a property. We assume readers are generally
familiar with the regex notation popularized by Perl, with core
operators of concatenation (·), disjunction (|), and repetition (*), and
syntax sugar for other operations (e.g., character classes, one-or-
more repetition, etc.). For example, the set of valid email addresses
might be described as /\S+@\S+\.\S+/.1
Most programming languages support regexes. Under the hood,

programming languages implement a regex engine to compile and

1This regex is not RFC-compliant, but it is used in major software projects.

evaluate regexes. These regex engines convert a regex to a non-
deterministic �nite automaton (NFA) [33] using an algorithm simi-
lar to those of Thompson [41] and Glushkov [23]. These construc-
tions are easiest to understand through a botttom-up approach,
building a more sophisticated automaton from the constituent parts
depicted in the �rst four �gures in Figure 1.

a

a

a
b

a · b

a

ϵ

a∗

ϵ

ϵ

a

b

a |b

ϵ

ϵ

a

a

ϵ

(a |a)*

Figure 1: NFAs for the fundamental regex operations.

After constructing the NFA for a regex, a regex engine resolves a
match query by simulating the automaton. Most regex engines use
backtracking [6] to resolve any non-determinism. Unfortunately, a
regex match using these backtracking-based algorithms has expo-
nential worst-case time complexity [34, 45, 46]. The �nal example
in Figure 1 illustrates the NFA for a regex with such behavior. Each
time the regex engine encounters an ‘a’, it advances along one path
and saves the other in a backtracking stack for later consideration
if the �rst path does not end in a match. On the input anb, i.e., n
a’s and a b, there are 2n paths through this automaton. The regex
engine will explore all of these paths before concluding a mismatch.
Theworst-case time complexity of a backtracking NFA simulation

depends on the degree of ambiguity [4] in the regex’s structure.
Some regexes have exponential behavior, others polynomial, and
others linear in the input length. Several researchers have proposed
algorithms to identify super-linear (SL) regexes by �nding inputs for
which there are many distinct accepting paths through an NFA [45,
46] (i.e., the NFA is highly ambiguous).

ReDoS Crosby andWallachwere the �rst to observe that SL regex
match behavior could be exploited by attackers as a special case of
an algorithmic complexity attack [12, 13]. An attacker can submit
malicious input and trigger ReDoS if three ReDoS conditions are
met: (1) A web server performs a regex match on unsanitized client
input; (2) The regex has super-linear worst-case time complexity;
and (3) The web server enforces no safeguards to cap a client’s
regex resource usage.
Condition (1) is commonly met, since one of the primary use

cases of regexes is to perform sanitization. Condition (3) is com-
monly met as well, as most regex engines do not o�er resource caps
and modern web frameworks do not o�er higher-level resource
cap primitives [17]. However, we know little about Condition (2).
Anecdotally, high-pro�le ReDoS incidents include outages at Stack
Over�ow [19] and Cloud�are [24]. Staicu & Pradel further showed
that a few SL regexes in popular JavaScript modules could be lever-
aged to achieve ReDoS against thousands of popular websites [40].
But are SL regexes common enough to rethink regex engines?

ACM SRC Grand Finals 2019-2020, June 20, 2020, San Francisco, CA, USA James C. Davis (Advisor: Dongyoon Lee)

Empirical studies of regexes Regexes have received little em-
pirical attention. Stolee’s research team has found that regexes
are used in up to 40% of Python projects [9], that synonymous
regexes have di�ering comprehensibility [10], that regexes are
under-tested [44], and that regexes tend to evolve towards match-
ing a wider set of strings [43]. But we lack large-scale empirical
studies to characterize software engineering practices surrounding
ReDoS. Until then, we cannot tell whether ReDoS is a serious threat.

ReDoS defenses ReDoS defenses can be erected at the appli-
cation and regex engine levels. At the application level, software
engineers might replace an SL regex with a linear-time equivalent.
At the regex engine level, several defenses against ReDoS have
been deployed in production regex engines. The regex engines of
PHP, Perl, and the .NET framework deliver exceptions if a regex
match uses too many resources.2 Perl and RE2 use memoization
to decrease the worst-case time complexity of a match, although
Cox showed that the Perl scheme is incomplete [11]. Rust and Go
both employ Thompson’s lockstep NFA simulation [41], which
lowers the match complexity to linear in the length of the input
string [11, 41].3

3 Approach and Uniqueness
Unknowns The literature is silent on two ReDoS questions: (1)
How widespread is the use of SL regexes in practice (§3.1)?, and (2)
How shall we defend against ReDoS (§3.2)?

3.1 Super-linear regexes in practice
The incidence of SL regexes (ReDoS Condition 2) In our �rst
study, we considered SL regex use in two software ecosystems [14].
We considered major programming languages, measuring both
JavaScript and Python for comparitive purposes. We studied the
software modules published in each language’s primary module
registry, for two reasons. First, it permits a relatively fair cross-
language comparison, as modules �ll similar ecological niches, e.g.,
logging or schema validation. Second, modules are published, main-
tained, and used by a mix of open-source and commercial software
developers; their security vulnerabilities have a ripple e�ect.
We mapped software modules from their registry to GitHub, and

cloned as many as possible. We used static analysis to identify
regex-creating callsites and extract regexes from them.
To identify SL regexes, we used an ensemble of three SL regex

detectors [34, 45, 46]. These detectors predict the worst-case be-
havior of a regex by modeling the underlying regex engine. Since
production regex engines may deviate from this model [3, 8], we
estimated each SL regex’s worst-case time complexity by �tting
curves to its match time when sampled across several input lengths.

Testing generalizability The previous study had two principal
threats to generalizability. First, it is unclear whether the regexes
obtained through that regex extraction methodology — statically
�nding regexes hard-coded into applications — are similar to those
de�ned dynamically. Second, it is unclear whether �ndings from
two programming languages will generalize to others (e.g., from
“scripting” languages to “systems” languages).

2This addresses ReDoS Condition 1.
3This addresses ReDoS Condition 3.

In our second study [16], we attempted to replicate our results
across alternative regex extraction methodologies and program-
ming languages. To compare extraction methodologies, we ex-
tracted regexes from software modules both statically and dynam-
ically. For static regex extraction, we used the same extraction
methodology as before. For dynamic regex extraction, we instru-
mented regex-creating callsites and then ran the project’s test suite.
To determine whether regex characteristics have di�erent prop-

erties by programming language, we compared regexes extracted
from the 25,000 “most important” softwaremodules written inmany
“major” programming languages. We measured importance using
GitHub stars, shown to be a reasonable proxy [7]. We operational-
ized language prominence using two conditions: (1) The language
has a large module ecosystem; and (2) The language is widely used
by the open-source community. We consulted the ModuleCounts
website [18] and the GitHub language popularity report [22] to
identify the top �ve programming languages under these rules. We
also included Perl, Go, and Rust for scienti�c interest: Perl popular-
ized the idea of regexes as a �rst-class language member, and Go
and Rust are relatively new mainstream languages.
We used a subset of these modules — those from JavaScript,

Python, and Java — to test the e�ect of regex extraction methodol-
ogy. We found that the extraction method had no e�ect. To simplify
our experimental methodology, we then tested the e�ect of pro-
gramming language using only statically extracted regexes from
software written in these eight programming languages.
For all of these tests, we computed eight regex metrics across

three dimensions. We used both existing metrics from the liter-
ature [9, 27, 44, 46], and new metrics designed to inform regex
engine development. We built our measurement instruments on
Microsoft’s Automata library [31]. We compared each metric’s dis-
tributions across the relevant subsets of the resulting regex corpora.

3.2 Existing ReDoS defenses
We considered the e�ectiveness of existing ReDoS defenses at the
application and regex engine levels.

Refactoring applications (ReDoS Condition 2) Some regex
engines leave the responsibility of avoiding ReDoS in the hands of
application developers. To avoid ReDoS, application developers can
refactor SL regexes into a linear-time alternative. No studies have
examined ReDoS refactoring strategies, nor whether application
developers can reasonably be expected to bear this responsibility.
As part of [14], we �rst identi�ed typical ReDoS repair strategies,

and then observed software engineers as they e�ected new repairs.
To identify typical strategies, we characterized the repair strategies
followed by engineers in previously-reported ReDoS vulnerabilities
(CVE database). We then disclosed ReDoS vulnerabilities to the
maintainers of 284 modules. In our disclosures we described the
vulnerability in their software and examples of each repair strategy
we identi�ed. We then observed the maintainers’ repair strategies.

Replacing regex engines (ReDoS Condition 2) Another path
to avoid ReDoS is to replace a slowmatching algorithmwith a faster
one, either via signi�cant engine refactoring or by substituting one
regex engine with another. The risk of this defense is the portability
problems that may result. Any regression in regex behavior would
entail substantial application-level refactoring.

ESEC/FSE: G: On the Impact and Defeat of Regex DoS ACM SRC Grand Finals 2019-2020, June 20, 2020, San Francisco, CA, USA

In our third study [15], we explored the viability of this approach.
To operationalize the concept, we measured the extent of the de-
crease in worst-case match times in eight regex engines, and the ex-
tent to which regexes are syntactically and semantically equivalent
in these engines. These regex engines use a variety of algorithms
and optimizations, but all adhere to the Perl-Compatible Regular
Expressions (PCRE) standard [25]. Thus, this experiment simulta-
neously identi�es the risks and bene�ts of changing regex engines
(an application level defense) and estimates the risks of regressions
after a major refactoring (a regex engine level defense).
We used a di�erential testing approach [28] in this experiment.

We compared the behavior of a set of regexes on all pairs of regex
engines. We used the polyglot regex corpus described in the Gener-
alizability study [16], and generated inputs using an ensemble of
regex input generators [5, 27, 32, 37, 42].
Resource caps (ReDoS Condition 3) Three production-grade
regex engines enforce some notion of “maximum allowed resource
usage” for each query. Perl and PHP measure resource usage by
progress through the search algorithm. The .NET regex engine can
be con�gured to measure resource usage by wall-clock time. These
engines deliver exceptions if the usage threshold is exceeded.
In this experiment, we measured the e�ectiveness and utility of

these solutions.4 For e�ectiveness, we determined whether each
of these schemes delivers an exception when problematically long-
running regex match queries are issued. For utility, we determined
the extent to which practitioners adopt the optional .NET defense.

3.3 A new ReDoS defense
Memoization [30]5 has been proposed as a ReDoS defense [20, 36].
Memoization reduces match time complexity from exponential to
linear in the input string, but comes at the cost of in�ating the typi-
cal space cost from constant to linear in the input string. The time
savings occurs because many paths in an SL NFA simulation are
redundant. For example, in the exponential simulation of the �nal
NFA from Figure 1, each pair of non-deterministic choices has the
same e�ect, and so only one need be explored. The space cost occurs
because recording an NFA simulation using typical memoization
data structures (bitmap, hash table) requires O(|Q | × |w |) space
for |Q | automaton states and an input string of length |w |. Two
production-grade regex engines incorporate some memoization to
reduce the time complexity of a regex match, but both implementa-
tions truncate the memoization table to the detriment of their time
complexity.
In this part of the work, we propose space-saving memoization

schemes that permit linear-time matches with lower, constant-to-
linear, space complexity.6 We prove the properties of two novel
selective memoization [1] schemes. We also propose a novel use of
run-length encoding (RLE) [35] as a memoization data structure.
Intuitively, RLE takes advantage of regex engines’ ordered search
regime — PCRE-compatible regex engines guarantee a leftmost-
greedy search semantic, which yields a low-entropy memo table
at all points of the simulation. We prototype these schemes and
evaluate the performance of all nine conditions (3 memoization
schemes × 3 data structures) on our corpus of SL regexes.
4This work is not yet published.
5The idea of memoization is to record the result of prior calculations.
6This work is not yet published.

Table 1: Results from �rst study [14].

Registry Scanned Modules Unique Regexes SL Regexes

npm (JS) 375,652 (66%) 349,852 3,589 (1%)
pypi (Python) 72,750 (58%) 63,352 704 (1%)

Table 2: Polyglot regex corpus.

Lang. (Registry) # mod. anal. Unique regexes

JavaScript (npm) 24,997 150,922
Java (Maven) 24,986 19,332
PHP (Packagist) 24,995 44,237
Python (pypi) 24,997 43,896
Ruby (RubyGems) 24,999 153,334

Go (Gopm) 24,997 22,105
Perl (CPAN) 31,827 (all) 142,777
Rust (Crates.io) 11,724 (all) 2,025

4 Results and Contributions
4.1 Super-linear regexes in practice
The incidence of SL regexes In this experiment, we analyzed
around 450,000 software modules, extracted around 400,000 unique
regexes from them, and found that 1% of these regexes exhibited
SL worst-case behavior (Table 1). Applying curve �tting to the SL
regex match times, we found that 74% of the regexes had worst-
case quadratic behavior in their respective regex engines, with the
remainder either exponential or a higher polynomial. These results
were consistent between JavaScript and Python modules.

Testing generalizability To test whether regexes are similar
when declared statically or obtained dynamically, we �rst examined
75,000 modules from JavaScript, Python, and Java. Following the
two extraction techniques in the literature, we obtained regexes
both statically and dynamically. We measured these regexes along
our eight metrics. We found no signi�cant di�erence between the
distributions for any metric.
To test whether engineers write similar regexes across program-

ming languages, we then analyzed around 200,000 software mod-
ules and statically extracted around 500,000 unique regexes from
them (Table 2). The �rst �ve languages in the table are the “ma-
jor” languages according to our methodology, and the others were
included for scienti�c interest. After measuring these regexes, we
found that the regexes from di�erent programming languages are
not signi�cantly di�erent on four of our eight metrics, and on the
other metrics only a few languages are outliers. Figure 2 shows the
results for regex length — the distributions of Java, PHP, Python,
and Ruby were indistinguishable using our statistical tests, while
Perl regexes tend to be shorter than those of Go and Rust with
moderate e�ect sizes.

4.2 ReDoS defenses
Refactoring applications We identi�ed 37 historical ReDoS re-
ports. Three �x strategies were typical in these reports: (1) Trim,
i.e., limit the size of input to the regex; (2) Revise, i.e., change the
regex; and (3) Replace, e.g., use custom parsing logic. We then sent
reports to 284 software module maintainers, yielding 48 �xes. The
�x strategies are summarized in Table 3.

ACM SRC Grand Finals 2019-2020, June 20, 2020, San Francisco, CA, USA James C. Davis (Advisor: Dongyoon Lee)

JS Java PHP Python Ruby Go Perl Rust

10

20

30

40

50

60

70

Re
ge

x
pa

tte
rn

 le
ng

th
 (C

#)

149K
19K

44K 43K 152K 22K
141K

2K

Regex Pattern Lengths By Language

Figure 2: Regex lengths by programming language. Whiskers indi-
cate the (10,90)th percentiles. Reported in [16].

Table 3: Fix approaches for SL regexes (from [14]).

Trim Revise Replace Total

Historic Fix approach 8 18 11 37
Unsafe �xes 1 2 0 3

New Fix approach 3 35 15 48
Unsafe �xes* 0 0 0 0

Figure 3: Proportion of SL regexes in eight prog. langs [15].

We note two �ndings from this experiment. First, Table 3 suggests
that developers prefer to Revise when they consider all alternatives.
Second, there were unsafe �xes in the historical data, and in the
new data many initial �xes were unsafe and needed correction.
ReDoS repair appears to be di�cult; researchers should explore
automatic refactoring techniques.
Replacing regex engines We found that strong safety bene�ts
can be obtained by substituting one regex engine for another. The
proportion of the polyglot regex corpus (Table 2) that exhibits SL
behavior in each programming language is shown in Figure 3.7
Clearly there are safety bene�ts to be gained by moving from one
regex engine to another. As indicated in the annotation of Figure 3,
engines can be divided into three performance tiers based on their
optimizations, resource caps (discussed later), and algorithms. The
performance improvement is monotonic; regexes never run more
slowly when moved from a slower tier to a faster one.
However, we also found that software engineers should be care-

ful when substituting one regex engine for another (or performing

7In this experiment we improved the SL regex detector ensemble. Our new techniques
identi�ed an order of magnitudemore SL regexes than were found in Table 1, suggesting
that ReDoS may be a more serious problem than is implied by Table 1.

Table 4: The e�ectiveness of resource cap approaches.

Lin.-time match Capped (defended) Timed out (vuln.)

Perl 73% 1% 26%
PHP 27% 35% 38%

.NET (C#) 0% 100% 0%

major regex engine refactoring). Most regexes were syntactically
valid in all regex engines, e.g., 88% were valid in all but Rust. To
compare semantics, we generated a median of 2,410 distinct inputs
for each regex, and found that 15% of regexes exhibited some se-
mantic di�erence between some pair of regex engines. Figure 4
shows the extent of pairwise di�erences.

Figure 4: Potential semantic portability problems (from [15]).
Darker cells indicate greater di�erence, with 1% ≈ 5,000 regexes.

Resource caps We found that existing time-based resource caps
are more e�ective than existing progress-based caps. We tested the
behavior of the three capped regex engines on the 51,224 SL regexes
identi�ed in Figure 3. Table 4 shows the relative e�ectiveness of
each. For the progress-based caps, Perl’s optimizations are stronger
than PHP’s, but PHP’s measure of progress is more e�ective than
Perl’s. While both Perl and PHP permit a large proportion of SL
regex behavior, the time-based cap of .NET was perfectly e�ective.
We also found that the utility (adoption rate) of optional resource

caps is low. The Perl and PHP caps are on by default, and thus have
near-perfect adoption. The .NET cap is o� by default. Although
the .NET documentation recommends its use, their pleas fall on
deaf ears. Following our earlier module mining methodology, we
cloned the 35,194 C# modules hosted on GitHub and found that
2,812 modules used regexes. Among these, only 5% of the modules
used a timeout, and only 1% of SL regex use was protected by a
timeout. We hope these �ndings guide the further improvement
and adoption of resource cap-based defenses.

4.3 A new ReDoS defense
Although some argue that memoization in regex engines costs
too much space [11], our results suggest that this conclusion is
premature. To guide the use of memoization, we proved theorems
describing the time complexity for two novel selective memoization
schemes. These schemes involve tracking the visits to a subset Φ of
the NFA states Q . Their time complexity depends on |Q |, |Φ|, and
the length ofw , the input string.

ESEC/FSE: G: On the Impact and Defeat of Regex DoS ACM SRC Grand Finals 2019-2020, June 20, 2020, San Francisco, CA, USA

Figure 5: Space costs of memoization schemes, relative to a |Q | × |w |

bitmap. Whiskers are the (1,99)th percentiles.

Theorem 4.1 Memoizing only visits to vertices with in-degree > 1
yields time complexity of O(|Φin−deд>1 | ∗ |w |).
Theorem 4.2Memoizing vertices that are the destinations of back-

edges yields time complexity of O(f (Q) ∗ |Φback−edдe | ∗ |Q | ∗ |w |).
(Space constraints prevent us from including the proofs).
Although the time complexity of the second scheme is somewhat

larger, more critical is that both complexities are linear in |w |. Their
space complexity is O(|Φ| × |w |) for input stringw .
We prototyped these selection schemes and the three data struc-

tures for the memoization table on a simple regex engine provided
by Cox. With several extensions, this engine can perform regex
matches for about 30% of the polyglot regex corpus. On the subset
of these regexes that are SL in a backtracking regex engine, the
memoization schemes exhibited (the predicted) linear time complex-
ity. For this subset, the space costs for the experimental conditions
are shown in Figure 5. We note �rst that, as the space cost of a hash
table is a substantial fraction of |Φ| × |w |, so the orange bars show
thatmost NFA vertices are not in either of the selected vertex subsets Φ.
Second, the RLE representation (green bars) o�ers signi�cant space
bene�ts for the vast majority of regexes. Our prototype achieved
linear-time matches at e�ectively constant space cost.
Our theorems only apply to “truly regular” regexes, limiting

the supported regex features. However, only 5% of regexes use
irregular features like backreferences, so our theorems apply to 95%
of regexes. Thus, the combination of selective memoization and
RLE appears promising as a transparent ReDoS solution.

4.4 Research impact
My research on regex engineering practices and their security im-
plications has led to four �rst-author publications [14–17] and
one co-authored publication [29] in top-tier software engineer-
ing and security venues. Two of these works won ACM SIGSOFT
Distinguished Paper awards [14, 29]. Among other accomplish-
ments, these works identi�ed security �aws in major software
projects (e.g., core libraries of Python and Node.js) [14]; identi�ed
errors in the regex engines of Python, Google’s JavaScript-V8, Ruby,
and Rust [15]; and replicated, validated, and improved upon regex
research methodology [16]. My contributions to regex safety have
been acknowledged by Microsoft’s security team.
References
[1] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2003. Selective memoization.

In Principles of Programming Languages (POPL).

[2] Alfred V Aho. 1980. Pattern matching in strings. In Formal Language Theory.
[3] Alfred V. Aho and Margaret J. Corasick. 1975. E�cient string matching: an aid

to bibliographic search. CACM 18, 6 (1975), 333–340.
[4] Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi. 2008. General Algorithms

for Testing the Ambiguity of Finite Automata. In ICDLT.
[5] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. 2017. MutRex: A

Mutation-Based Generator of Fault Detecting Strings for Regexes. In ICSTW.
[6] Alex Birman and Je� Ullman. 1970. Parsing Algos. With Backtrack. In SWAT.
[7] Hudson Borges and Marco Tulio Valente. 2018. What’s in a GitHub Star? Under-

standing Repository Starring Practices in a Social Coding Platform. In JSS.
[8] R. Boyer and J. Moore. 1977. A fast string searching algorithm. In CACM.
[9] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage

and context in Python. In ISSTA.
[10] C. Chapman, P. Wang, and K. Stolee. 2017. Exploring Regular Expression Com-

prehension. In Automated Software Engineering (ASE).
[11] Russ Cox. 2007. Regular Expression Matching Can Be Simple And Fast (but is

slow in Java, Perl, PHP, Python, Ruby, ...).
[12] Scott Crosby. 2003. Denial of service through regular expressions. In USENIX

Security work in progress report.
[13] Scott A Crosby and Dan S Wallach. 2003. Denial of Service via Algorithmic

Complexity Attacks. In USENIX Security.
[14] J. Davis, C. Coghlan, F. Servant, and D. Lee. 2018. The Impact of Regular Expres-

sion Denial of Service (ReDoS) in Practice. In ESEC/FSE.
[15] J. Davis, L. Michael IV, C. Coghlan, F. Servant, and D. Lee. 2019. Why aren’t

regular expressions a lingua franca?. In ESEC/FSE.
[16] J. Davis, D. Moyer, A. Kazerouni, and D. Lee. 2019. Testing Regex Generalizability

And Its Implications: A Large-Scale Many-Language Measurement Study. In ASE.
[17] J. Davis, E. Williamson, and D. Lee. 2018. A Sense of Time for JavaScript and

Node.js: First-Class Timeouts as a Cure for EHP. In USENIX Security.
[18] Erik DeBill. [n. d.]. Module Counts. http://www.modulecounts.com/.
[19] Stack Exchange. 2016. Outage Postmortem. http://stackstatus.net/post/

147710624694/outage-postmortem-july-20-2016.
[20] Bryan Ford. 2002. Packrat Parsing: Simple, Powerful, Lazy, Linear Time. In ICFP.
[21] Je�rey EF Friedl. 2002. Mastering regular expressions. O’Reilly Media, Inc.
[22] GitHub. 2018. The State of the Octoverse. https://octoverse.github.com/.
[23] V M Glushkov. 1961. The Abstract Theory of Automata. Russian Mathematical

Surveys 16, 5 (1961), 1–53.
[24] Graham-Cumming, John. 2019. Details of the Cloud�are outage on July 2, 2019.

https://blog.cloud�are.com/details-of-the-cloud�are-outage-on-july-2-2019/.
[25] Philip Hazel. 2018. PCRE2 - Perl Compatible Regular Expressions, 2ed.
[26] S. C. Kleene. 1951. Representation of events in nerve nets and �nite automata.

Automata Studies (1951), 3–41.
[27] Eric Larson and Anna Kirk. 2016. Generating Evil Test Strings for Regular

Expressions. In ICST.
[28] William M Mckeeman. 1998. Di�erential Testing for Software. Digital Technical

Journal 10, 1 (1998).
[29] L. Michael IV, J. Donohue, J. Davis, D. Lee, and F. Servant. 2019. Regexes are

Hard: Decision-making, Di�culties, and Risks in Programming Regexes. In ASE.
[30] Donald Michie. 1968. "Memo" Functions and Machine Learning. Nature (1968).
[31] Microsoft. [n. d.]. Automata and transducer library for .NET.
[32] Anders Møller. 2010. dk. brics. automaton.
[33] M. Rabin and D. Scott. 1959. Finite Automata and their Decision Problems. IBM

Journal of Research and Development 3 (1959), 114–125.
[34] Asiri Rathnayake and Hayo Thielecke. 2014. Static Analysis for Regular Expression

Exponential Runtime via Substructural Logics. Technical Report.
[35] A. H. Robinson and Colin Cherry. 1967. Results of a Prototype Television Band-

width Compression Scheme. Proc. IEEE 55, 3 (1967), 356–364.
[36] Niko Schwarz, Aaron Karper, and Oscar Nierstrasz. 2015. E�ciently extracting

full parse trees using regexes with capture groups. PeerJ Preprints (2015).
[37] Yuju Shen, Yanyan Jiang, Chang Xu, Ping Yu, Xiaoxing Ma, and Jian Lu. 2018.

ReScue: Crafting Regular Expression DoS Attacks. In ASE.
[38] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 1997.

An examination of software engineering work practices. In CASCON.
[39] Henry Spencer. 1994. A regular-expression matcher. In Software solutions in C.
[40] C. Staicu and M. Pradel. 2018. Freezing theWeb: A Study of ReDoS Vulnerabilities

in JavaScript-based Web Servers. In USENIX Security.
[41] Ken Thompson. 1968. Regular Expression Search Algorithm. CACM.
[42] Margus Veanes, Peli De Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic

regular expression explorer. ICST (2010).
[43] P. Wang, G. Bai, and K. Stolee. 2019. Exploring Regular Expression Evolution. In

SANER.
[44] Peipei Wang and Kathryn T Stolee. 2018. How well are regular expressions tested

in the wild?. In ESEC/FSE.
[45] N. Weideman, B. van der Merwe, M. Berglund, and B. Watson. 2016. Analyzing

matching time behavior of backtracking regular expression matchers by using
ambiguity of NFA. In LNCS.

[46] Valentin Wüstholz, Oswaldo Olivo, Marijn J H Heule, and Isil Dillig. 2017. Static
Detection of DoS Vulnerabilities in Programs that use Regexes. In TACAS.

http://www.modulecounts.com/
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
https://octoverse.github.com/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	3.1 Super-linear regexes in practice
	3.2 Existing ReDoS defenses
	3.3 A new ReDoS defense

	4 Results and Contributions
	4.1 Super-linear regexes in practice
	4.2 ReDoS defenses
	4.3 A new ReDoS defense
	4.4 Research impact

	References

