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ABSTRACT
Exploration problems are fundamental to robotics, arising in various
domains, ranging from search and rescue to space exploration. In
these domains and beyond, exploration algorithms that allow the
robot to rapidly create the map of the unknown environment can
reduce the time and energy for the robot to complete its mission.
Many effective exploration algorithms rely on the computation of
Shannon mutual information (MI) which allow the robot to select the
best location to explore in order to gain the most information about
the unknown environment. Unfortunately, computing MI metrics is
computationally challenging. While the computation of MI can be
parallelized and thus computed by many parallel cores, the main
challenge that limits throughput is the delivery of data to these cores.
As such, in this work we propose a MI hardware accelerator that has
a novel memory banking pattern and an arbiter that ensure effective
utilization of all MI cores to maximize throughput. In addition, our
rigorous analysis of the banking pattern and arbiter introduces a new
paradigm for theoretically evaluating hardware design decisions.
Finally, the proposed architecture is validated on an FPGA and
implemented on an ASIC in a commercial 65nm technology. Our
ASIC implementation computes the MI for an entire map from a
real-world experiment of 10.05𝑚×10.05𝑚 at 0.05𝑚 resolution in real
time at 11𝐻𝑧, which is 83× and 12× faster than the ARM Cortex-A57
CPU and NVIDIA Pascal GPU on the Jetson TX2 board respectively.
Furthermore, the ASIC implementation consumes 162𝑚𝑊 , which
is 21× lower and 19× lower than the ARM Cortex-A57 CPU and
NVIDIA Pascal GPU on the Jetson TX2 board respectively.

1 PROBLEM AND MOTIVATION
Robotic exploration problems arise in various contexts, ranging from
search and rescue missions to underwater and space exploration. In
these domains and beyond, exploration algorithms that allow the
robot to rapidly create the map of the unknown environment can
reduce the time and energy for the robot to complete its mission.
Shannon mutual information (MI) at a given location is a measure of
how much new information of the unknown environment the robot
will obtain given what the robot already know from its incomplete
understanding of the environment. A typical exploration pipeline
is shown in Figure 1 where robot starts with an incomplete map of
the environment. At every step, the robot computes the MI across
the entire map. Then, the robot can select the location with the
highest mutual information for exploration in order to gain the most
information about the unknown environment [1].

However, on the embedded Central Processing Units (eCPUs)
and Graphical Processing Units (eGPUs) typically found on mobile
robotic platforms, computing MI using the state-of-the-art Fast Shan-
non Mutual Information (FSMI) algorithm [2] across the entire map

Figure 1: A typical pipeline used for autonomous exploration.
To minimize the amount of exploration time and trajectory, the
robot computes the mutual information for the entire map in or-
der to choose the location with the highest mutual information
to explore. See video in [2].

takes more than one second, which is too slow for enabling fast au-
tonomous exploration. As a result, the emerging literature considers
approximation techniques, and many practitioners rely on heuristics
or computing MI across only a subset of locations within the map,
which often fail to provide any theoretical guarantees [3–5]. To elim-
inate the bottleneck associated with the computation of MI across
the entire map, we propose a specialized multi-core hardware that
accelerates the FSMI algorithm so that the throughput for computing
MI can be significantly increased while the power consumption is at
a fraction of that of the embedded CPUs and GPUs. In summary, we
made the following contributions.

(1) We propose a novel multi-core hardware architecture with
a memory subsystem that efficiently organizes the storage
of the occupancy grid map and an arbiter that effectively
resolves memory access conflicts among MI cores so that the
entire system achieves high throughput.

(2) We provide rigorous analysis of memory subsystem and ar-
biter in order to justify our design decisions and provide
provable performance guarantees.

(3) We thoroughly validated the entire hardware architecture by
implementing it using a commercial 65nm ASIC technology.

2 APPROACH AND UNIQUENESS
2.1 Challenges & Proposed Architecture
Occupancy grid map [6] is the probabilistic representation for the
2D environment stored in memory. At any scan location in the occu-
pancy grid map, the robot makes several range measurements which
are represented by sensor beams emanating from the scan location
(red dot) as shown in Figure 2(a). Computing the MI at the scan
location requires the summation of the MI along cells within the



ACM Student Research Competition, 2020, Grand Final Peter Zhi Xuan Li (Advisors: Sertac Karaman, Vivienne Sze)

3 3

4 2 2

3 2 1 2 3

1 1

3 2 1 2 3

4 2 2

3 3

4 4

Bresenham Ray-Casting

X

Y

(a) Sequence of occupancy cells along ev-
ery sensor beam (ray casted by the Bresen-
ham algorithm) that needs to be accessed
by the MI core every cycle, marked by num-
bers.

Regions in Occupancy Grid Map

X

Y

θ

2

13

4

(b) Labelled regions partitioned by diag-
onal axes (blue lines) with origin at the
scan location (red dot).

Figure 2: Properties of sensor beams emanating from scan lo-
cation (red dot) after ray casting using the Bresenham algo-
rithm [7] on an 8 × 8 occupancy grid map.

occupancy grid map that intersect each sensor beam. To increase
throughput, MI computation for cells along several beams can be per-
formed in parallel with multiple cores such that each core computes
MI for one beam. However, the system throughput becomes memory
bounded when the occupancy grid map is stored in a single dual-port
SRAM because each core requires one memory access from the map
every cycle to remain active as shown in Figure 3(a). To increase
memory bandwidth to the cores, we propose a hardware architecture
shown in Figure 3(b). The proposed architecture contains a memory
subsystem that stores the occupancy grid map in multiple smaller
dual-port banks so that there are more read ports for the cores to
access the map. Recall that memory access collision occurs when
more than two cores access distinct locations of the map stored
within the same bank. Thus, in Section 2.2, we propose a banking
pattern that assigns the occupancy grid map to the banks such that
the number of memory read conflicts among cores is minimized.
If the memory access collision do occur, the conflicting memory
access requests should be resolved quickly. Thus, in Section 2.3, we
propose a priority arbiter that quickly resolves potential memory
access conflicts. In addition, we rigorously characterize the area
(occupied by digital logic gates) and critical path of the arbiter to
ensure that they scale well with increasing number of cores.

2.2 Banking Pattern
We assign the occupancy grid map into several dual-port memory
banks to increase number of memory read ports / memory bandwidth
to the MI compute cores as shown in Figure 3(b). Since ray casting
for the sensor beams is performed using the Bresenham algorithm
[7], every core concurrently accesses the same column or row of
the occupancy grid map at every cycle as shown in Figure 2(a). To
minimize the number of memory access collisions among the cores,
the banking pattern should assign the cells in every column and row
of the occupancy grid map into different banks.

Let 𝐵 denote the number of banks in the memory subsystem that
stores the occupancy grid map. A Latin square pattern of size 𝐵 × 𝐵
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(a) Memory bandwidth from a dual-port SRAM that stores the occupancy grid
map limits the number of cores that can be active.
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(b) Proposed multi-core hardware architecture that provides sufficient memory band-
width so that the computation cores are active.

Figure 3: Proposed architecture resolves memory bandwidth
limitation from the memory to the computation cores.
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Figure 4: Latin-square banking pattern when the total number
of banks is 𝐵 = 8.

contains distinct numbers in each row and column of the square [8].
To minimize the number of memory access conflicts, we assign the
occupancy grid map into 𝐵 banks using the Latin-square banking
pattern as shown in Figure 4, which can be constructed by replicating
the Latin-square base tile of size 𝐵×𝐵 in Figure 4(a) across the entire
dimension of the occupancy grid map in Figure 4(b). We rigorously
proved that the Latin-square banking pattern is near-optimal in the
sense that it allows the cores to achieve the minimum number of
memory access conflicts (which scales in 𝑂 (1/𝐵2)) as the number
of sensor beams emanating from the same scan location and lying
within the same region (as defined in Figure. 2(b)) goes to infinity.
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Figure 5: Operation of the priority arbiter and its hardware
architecture.

2.3 Priority Arbiter
To ensure most cores are active, the arbiter should quickly resolve
memory access conflicts. Determining the optimal arbitration strat-
egy across all cores can be formulated as a Job Shop Scheduling
Problem, which is NP-hard for more than two cores [9]. Thus, we
propose a greedy arbitration heuristic, called the priority arbiter, that
makes a set of arbitration decisions as the memory access requests
are generated.

The operation of the priority arbiter is shown in Figure 5(a).
Each core has its own priority counter, which is initialized to its
total number of memory access requests at the beginning of MI
computation. At every cycle, the arbiter receives one memory access
request (i.e., bank and its address) from every core. Since each bank
has two ports, it can service up to two requests. In order to minimize
the number of remaining requests for every core, the priority arbiter
grants up to two requests with the highest priorities for every bank.
For the cores whose requests are granted, their next memory access

requests are sent to the arbiter and their priority counters decrease
by one. For the cores whose requests are not granted, their memory
access requests and priority counters remain unchanged. The priority
arbiter continues to operate until every request is serviced (i.e.,
priority counter for every core becomes zero).

An overview of the hardware architecture for the priority arbiter
is shown in Figure 5(b). The memory request and priority counter
for every core is broadcasted to several priority queues (one for each
bank) which identifies up to two requests with the highest priorities.
The priority queues are implemented using a tree-structured architec-
ture such that its critical path scales in 𝑂 (log(𝐶)) and its area scales
in 𝑂 (𝐶), where 𝐶 is the number of cores. Let 𝐵 denote the number
of banks used to store the occupancy grid map. Since the priority
arbiter is constructed using 𝐵 priority queues (one for each bank) that
operate concurrently, the critical path and area of the priority arbiter
scales in 𝑂 (log(𝐶)) and 𝑂 (𝐵𝐶), respectively. Since the critical path
the arbiter increases sub-linearly with the number of cores 𝐶, the
latency of the priority arbiter scales well with the number of cores.
To minimize the area of the arbiter given the number of cores 𝐶, we
need to minimize the number of banks 𝐵 used to store the occupancy
grid map while ensuring that these cores receive sufficient memory
bandwidth to remain active.

In our work, we rigorously proved that the arbiter greedily grants
the maximum number of requests every cycle without introducing
any deadlock. When the cores access the occupancy grid map that
is assigned to the banks using the Latin-square banking pattern,
we derived a guaranteed lower bound on the average percentage of
memory requests granted every cycle by the priority arbiter, which
is referred as the average core utilization. Since our proposed archi-
tecture contains 16 cores, we plotted the average utilization of these
cores vs. the number of banks 𝐵 used to store the occupancy grid
map (via the Latin-square banking pattern) as shown in Figure 6. As
the number of banks increases, the priority arbiter needs to resolve
less memory access conflicts, which leads to an increasing average
core utilization towards 100% (red line). In addition, the average core
utilization achieved by the priority arbiter lies above the theoretical
lower bound (blue line) and slightly below the state-of-the-art ar-
bitration strategy determined using the IBM CPLEX CP optimizer
[10] (green line). Thus, the performance of the priority arbiter is
comparable with the state-of-the-art arbitration strategy. In order to
minimize the area of the priority arbiter while ensuring that more
than 90% of the cores are utilized (i.e., more than 90% of the memory
requests are granted) every cycle, we need to use at least 16 banks
(i.e., 𝐵 = 16) to store the occupancy grid map via the Latin-square
banking pattern.

3 RESULTS AND CONTRIBUTIONS
We implemented the proposed architecture with 16 MI cores and par-
titioned the storage of a occupancy grid map with a maximum size
of 512 × 512 into 16 banks using the Latin-square banking pattern.
We validated the architecture using Xilinx Zynq-7000(XC7Z045)
FPGA and performed post-layout simulations using a commercial
65nm technology. In the following sections, we present the accu-
racy, throughput, latency and power consumption of the proposed
architecture.
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Figure 6: Average core utilization of the priority arbiter vs.
number of banks 𝐵 in the Latin-square banking pattern when
the proposed architecture contains 16 cores.
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Figure 7: Occupancy grid map and its corresponding MI map
computed in half-precision floating point arithmetic on an
FPGA.

3.1 Accuracy
We validated the MI computation for an occupancy grid map of size
281 × 281 in half-precision floating point arithmetic on the Xilinx
FPGA as shown in Figure 7(b). The resulting MI map has a loss of
accuracy less than 1.5% compared with the one computed in single
precision and is sufficiently accurate for autonomous exploration.

3.2 ASIC Post-layout Verification
The layout of the proposed architecture using a commercial 65nm
technology is shown in Figure 8. The post-layout power and chip
area of every module within the proposed architecture are shown in
Table 1. In summary, the ASIC implementation can be clocked at a
maximum frequency of 116.5𝑀𝐻𝑧 and consumes 162𝑚𝑊 .

3.3 Throughput, Latency & Power Consumption
Figure 9(a) shows the MI throughput vs. number of MI cores for a
variety of banking patterns and arbiters using cycle-accurate sim-
ulators. If the occupancy grid map is stored in a single dual-port
SRAM, the throughput is memory bounded and does not increase
with the number of cores as shown with the blue line (baseline).
On the other hand, if the memory that stores the occupancy grid
map contains unlimited number of ports, the MI throughput should
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Figure 8: Layout of the proposed hardware architecture with
16 cores and 16 banks using a commercial 65nm technology.

increase linearly with the number of cores as shown with the dotted
black line (theoretical limit). Our proposed architecture that uses the
Latin-square banking pattern and the priority arbiter achieves 91%
of the theoretical limit as shown with the purple line.

We also validated the MI computation time and power consump-
tion on the following hardware platforms: Server CPU (Intel Xeon
E5-4627), TX2 CPU (ARM Cortex-A57), TX2 GPU (256-core
NVIDIA Pascal), FPGA (Xilinx XC7Z045) and ASIC (a commercial
65nm technology). Using an occupancy grid map of size 201 × 201
from a real-world exploration experiment, the ASIC implementation
takes 90𝑚𝑠 to compute MI for the entire map, which is 23× faster
than the Server CPU, 83× faster than the TX2 CPU, and 12× faster
than the TX2 GPU as shown in Figure 9(b). The ASIC implemen-
tation consumes around 162𝑚𝑊 , which is 193× lower than Server
CPU, 19× lower than the TX2 CPU, and 21× lower than the TX2
GPU as shown in Figure 9(c).

4 RELATED WORKS
To the best of our knowledge, we proposed the first hardware accel-
erator for information-theoretic mapping in an earlier version of this

Table 1: Post-layout area and power for each hardware mod-
ule in the proposed architecture clocked at 116.5MHz using a
commercial 65nm technology.

Modules Area (𝜇𝑚2) Area
Percentage

Power
(𝑚𝑊 )

Power
Percentage

Workload Allocator 7,037 0.16% 0.2 0.1%

Ray-casting Subsystem 51,013 1.19% 3.1 1.9%

Arbiter 137,917 3.21% 14.6 9.0%

Occupancy Grid Map 2,000,086 46.59% 30.8 19.0%

MI Core (16×) 870,082 20.27% 58.6 36.2%

LUTs for MI Cores 293,523 6.84% 35.3 21.8%

Buffers 196,965 4.59% 2.7 1.7%

IO Drivers & Pads 720,000 16.77% 13.9 8.6%

Auxiliary 16,435 0.38% 2.8 1.8%

Total 4,293,058 100% 161.9 100%
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Figure 9: Throughput, latency and power of MI computation for the proposed architecture.

work at RSS 2019 [11]. In the earlier version, we used a round-robin
arbiter to grant memory access requests from the cores. Since the
round-robin arbiter cannot grant enough requests at every cycle, we
need to prefetch and buffer multiple cells in the map for each MI
core during every granted request in order to keep cores utilized. To
achieve this, we increased the memory bandwidth by storing four
cells per memory address; however, only a maximum of two of these
cells are actually used by the core to compute MI, which wastes
over 50% of the memory bandwidth. In the current version of this
work, we proposed the priority arbiter that is guaranteed to grant the
maximum number of requests every cycle. As a result, there is no
need to prefetch any extra cells to buffer for each core, and we only
need to store one cell per address which eliminates the wasted reads
in the previous design. For the design of the MI cores, we reduced
the precision of the floating-point arithmetic operations from single
precision to half precision so that the power consumption and chip
area are reduced with negligible decrease in computational accuracy
as shown in Figure 7. Finally, we validated our proposed architec-
ture using a commercial 65nm ASIC technology in addition to an
FPGA. By comparing the performance of the hardware architecture
in our previous work (RSS 2019) with the proposed architecture
in the current work on the same FPGA, the proposed architecture
in the current work maintains the same throughput but consumes
around 2× less power as shown in Figure 9(c) and requires 2× less
programmable logic.

5 CONCLUSION
In this work, we presented a new hardware architecture for high-
throughput computation of Shannon mutual information. We argued
that the key challenge is to design the memory organization and
memory request arbitration subsystems that ensure the maximum
utilization of parallel computation cores. The proposed hardware
architecture achieves this goal by using a Latin-square banking pat-
tern for memory organization that minimizes the number of memory
access conflicts among the cores and a priority arbiter that quickly
resolves these conflicts. We implemented the proposed architecture
with 16 high-throughput MI cores using a commercial 65nm tech-
nology. Our ASIC implementation computes the mutual information
for an entire map from a real-world experiment of 10.05𝑚 × 10.05𝑚

at 0.05𝑚 resolution in real time at 11𝐻𝑧, which is 83× and 12× faster
than the ARM Cortex-A57 CPU and NVIDIA Pascal GPU on the
Jetson TX2 board respectively. Furthermore, the ASIC implemen-
tation consumes 162𝑚𝑊 , which is 21× lower and 19× lower than
the ARM Cortex-A57 CPU and NVIDIA Pascal GPU on the Jetson
TX2 board respectively. Thus, the proposed architecture eliminates
the computational bottleneck for autonomous exploration and re-
duces the amount of exploration time and trajectory for time-critical
missions. In addition, our rigorous analysis of the banking pattern
and arbiter introduces a new paradigm for theoretically evaluating
hardware design decisions.

Acknowledgements. This work was partially funded by the AFOSR
YIP FA9550-16-1-0228, by the NSF CAREER 1350685 and NSF
CPS 1837212.

REFERENCES
[1] Brian J Julian, Sertac Karaman, and Daniela Rus. On mutual information-based

control of range sensing robots for mapping applications. The International
Journal of Robotics Research, 33(10):1375–1392, 2014.

[2] Zhengdong Zhang, Trevor Henderson, Vivienne Sze, and Sertac Karaman. FSMI:
Fast computation of Shannon Mutual Information for Information Theoretic Map-
ping. In IEEE International Conference on Robotics and Automation, 2019. URL
https://youtu.be/N7mi9uXKrP4?t=90.

[3] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider. Coor-
dinated multi-robot exploration. IEEE Transactions on robotics, 21(3):376–386,
2005.

[4] Héctor H González-Banos and Jean-Claude Latombe. Navigation strategies for
exploring indoor environments. The International Journal of Robotics Research,
21(10-11):829–848, 2002.

[5] Dirk Holz, Nicola Basilico, Francesco Amigoni, Sven Behnke, et al. A Compar-
ative Evaluation of Exploration Strategies and Heuristics to Improve Them. In
ECMR, pages 25–30, 2011.

[6] Alberto Elfes. Using occupancy grids for mobile robot perception and navigation.
Computer, (6):46–57, 1989.

[7] Jack Bresenham. A linear algorithm for incremental digital display of circular
arcs. Communications of the ACM, 20(2):100–106, 1977.

[8] L. Budach. DÉnes, j., a. d. keedwell: Latin squares and their applications.
akademiai kiadó, budapest 1974. 547 s., ft 320,-. Biometrical Journal, 23(7):
725–726, 1981. doi: 10.1002/bimj.4710230715. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/bimj.4710230715.

[9] Yu N Sotskov and Natalia V Shakhlevich. Np-hardness of shop-scheduling
problems with three jobs. Discrete Applied Mathematics, 59(3):237–266, 1995.

[10] IBM. Ilog cplex optimization studio. URL https://www.ibm.com/products/ilog-
cplex-optimization-studio.

[11] Peter Zhi Xuan Li, Zhengdong Zhang, Sertac Karaman, and Vivienne Sze. High-
throughput Computation of Shannon Mutual Information on Chip. In Robotics:
Science and Systems (RSS), 2019.

https://youtu.be/N7mi9uXKrP4?t=90
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710230715
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710230715
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio

	Abstract
	1 Problem and Motivation
	2 Approach and Uniqueness
	2.1 Challenges & Proposed Architecture
	2.2 Banking Pattern
	2.3 Priority Arbiter

	3 Results and Contributions
	3.1 Accuracy
	3.2 ASIC Post-layout Verification
	3.3 Throughput, Latency & Power Consumption

	4 Related Works
	5 Conclusion
	References

