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1 PROBLEM AND MOTIVATION

Packet generator is widely used to generate traffic with cus-
tomized properties (e.g., rate, packet type) and plays a vital
role in network researches and network operations. Net-
work researchers use packet generators to examine the per-
formance of purposed prototypes [1]. For network opera-
tors, packet generators are required in latency measurement
[2][3] and failure troubleshooting [4]. The development of
current network gives rise to new demands on packet gener-
ators in two ways. Firstly, packet generators need to be high-
performance to meet expanding network bandwidth (from
10Gbps to 100Gbps). Secondly, packet generators should be
capable of customizing packets flexibly to satisfy constantly
emerging network functions and protocols.

Existing packet generators can be categorized into hard-
ware approaches and software approaches. Commodity packet
generators based on proprietary hardware [5][6] can gener-
ate high rate traffic with certain pre-defined properties, yet
typically they are not flexible enough for testing new proto-
cols and new functions unless asking for extra customization
from the product provider. Besides, the proprietary hardware
can be expensive. For instance, a two-port (10GbE) packet
test module can cost $25,000 [7]. Open-source packet gen-
erators based on the programmable chip like NetFPGA are
reconfigurable [7][8] but of limited performance. Software
approaches [9][10][11] based on general platforms are flexi-
ble enough for users to customize generation logic, but users
have to consider the trade-off between performance and cost.
For instance, an 8-core commodity server can hardly gener-
ate 100Gbps traffic [11][12]. Therefore, when operators need
high rate traffic (e.g., pressure test of a large network), many
servers are needed, and the cost increases rapidly.

Motivated by limitations of current approaches, we present
HyYPERGEN, a high-performance, flexible packet generator
with reasonable cost using programmable switching ASIC
[13][14][15]. HYPERGEN can produce above 1Tbps accurate
traffic and allows users to customize packets flexibly by re-
configuring the packet processing logic, which makes Hy-
PERGEN competent for plenty of tasks, such as throughput
testing, latency and loss measurement, and denial-of-service
attack emulation. With our further development, HYPERGEN
now serves as an essential part of a mature network tester
[16] and is capable of many complicated testing tasks.

However, It is not trivial to design programmable switch-
ing ASIC as a packet generator due to its limitations on
programmability and resources. We deal with the challenge
from two perspectives. Firstly, we co-design switch CPU and
switching ASIC by proposing template-based packet generation
that leverages switch CPU to generate template packets to
enhance the flexibility of packet generation. Secondly, we
propose a new pipeline design in switching ASIC for high-
performance packet generation. The pipeline conducts ac-
celeration, replication, and edition on template packets to
generate high-performance testing traffic for various tasks.

2 BACKGROUND AND RELATED WORK
2.1 Background

Programmable switching ASIC. Based on reconfigurable
match-action table (RMT) model [17], the reconfigurable
components in programmable switching ASIC can be loosely
divided into two parts, the parser and the pipeline. Parser
decodes and encodes packets as the user-defined packet
header formats. Pipeline contains multiple stages to imple-
ment RMTs that define the packet processing logic. Users
can use network processing language like P4 [13] to access
the switching ASIC and modify the packet processing logic.

Switching ASIC is designed as high-performance packet
forwarding data plane, accounting for switching ASIC pro-
hibiting operations that cannot guarantee the performance
(e.g., nonlinear operations such as for/while). Therefore,
switching ASIC, though titled programmable, has limited
programmability. Meanwhile, the resources of ASIC are not
without ground, especially RAM for data plane storage.
Programmable switch CPU. Programmable switches such
as Tofino [15] also have a switch CPU connecting to switch-
ing ASIC by PCle. Switch CPU serves as the control plane
and is responsible for managing table rules of the data plane.
Switch CPU can also acquire data (e.g., counter value, packet
digest) from switching ASIC by control programs.

2.2 Related Work

In this section, we talk about three types of related works:
commodity packet generators based on proprietary hard-
ware, open-source packet generators based on NetFPGA,
and software packet generators based on the general server.
The comparison of related works is summarized in table 1.



Table 1: Comparison of current approaches .

Metrics (1Tbps) Device(s) Required Flexibility Equipment Cost
Proprietary hardware 1 limited ~ $100,000
NetFPGA ~ 8 high’;?stizrﬁizvzi:js;kload ~ $50,000
Software ~10 using API aflliigl}qligv;ll-tl}e;:etltifr(‘)yg(;giﬁfng language ~ $30,000
HyPERGEN 1 high, with moderate workload ~ $3,600

using NTAPI [16]

Commodity packet generator. Commodity packet gen-
erators based on proprietary hardware [5][6] can provide
high rate customized traffic with high precision. Commodity
packet generators are user-friendly and support rich net-
work functions. However, proprietary hardware typically
costs a lot [7]. Meanwhile, though supporting many network
functions and protocols, commodity packet generators can
hardly be extended to support new functions and protocols.
HyYPERGEN, compared with commodity packet generators,
has improvements on flexibility as switching ASIC can be
reconfigured to customize new generation logic for users.
Open-source packet generator. Based on programmable
hardware like NetFPGA [18], open-source packet generators
are reconfigurable, thus providing flexible customization.
Unfortunately, NetFPGA achieves limited throughput (e.g.,
a NetFPGA board equipped with four 10Gbps ports costs
approximately $7000 [19]). HYPERGEN outperforms open-
source packet generators for generating above 1Tbps traffic
in a single programmable switch whose cost is acceptable
(e.g., a Barefoot Tofino [15] programmable switch with 32
100Gbps ports costs approximately $3600 [20]). Furthermore,
designing FPGA is notoriously complex [21][22], while Hy-
PERGEN allows users to control generation logic with net-
work testing API as our recent work [16], accordingly easing
the workload of reconfiguration.

Software packet generator. Software packet generators
based on general servers make huge progress in recent years.
Original software packet generators leverage socket pro-
gramming (e.g., scapy [23]) or kernel functions (e.g., pktgen
in Linux [9]). Consequently, original software generators
have quite limited performance [12]. With the development
of fast network I/O technologies like DPDK [24] and netmap
[25], the throughput has raised over one order of magnitude
[10][11]. However, throughput and accuracy of software
generators are still constrained by capability of the CPU.

1We estimate the cost of NetFPGA using NetFPGA-SUME Virtex-7 FPGA
Development Board (four 10Gbps port with one extra empty interface for
100Gbps, about $7,000), so number is 1000 / 140 = 8, and cost is 1000 * 7000
/ 140 = $50,000. We estimate cost of server with the fact MoonGen can
produce less than 100Gbps traffic in 8-core server (about $3,000).
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Figure 1: Architecture of HYPERGEN.

Therefore, higher demands on performance ask for more
CPU cores, accounting for the undesirable trade-off between
performance and cost. Software packet generators are in
no doubt the most flexible packet generators, while HYPER-
GEN outperforms software packet generators with a high
performance-to-price ratio.

3 APPROACH AND UNIQUENESS
3.1 Workflow

Figure 1 illustrates the architecture of HypPERGEN. The work-
flow of HYPERGEN can be summarized into three steps:
Compile tasks to generate template packets and packet
processing logic of switching ASIC. Generation tasks are
complied into switch configurations, template packets, and a
P4 program controlling the packet processing logic of switch-
ing ASIC. Besides, in most tasks, packet generators are also
responsible for analyzing generated packets or received pack-
ets from devices under test (DUT) to make the generation
helpful for operators.

Forward template packets into packet generation pipe-
line to generate testing traffic. Template packets have not
satified all demands of testing tasks (e.g., high rate). There-
fore, after switch configurations are set and the P4 program is
downloaded into switching ASIC, switch CPU forwards tem-
plate packets into packet generation pipeline, and switching
ASIC generates testing traffic from template packets.
Collect and analyze statistics from generated packets
and received packets. HYPERGEN can record a particular
per-packet field value, or statistical data such as packet count,



T} = trigger()
.set([dip,dport, proto, flag, seq_no], [X, 80, tcp, SYN, 1])
.set(sip,range(Y,Z,1))
.set(sport,range(A, B, 1))
.set([length, interval], [64,0.1us])
Q! = query(T}).map(p— > (pkt_len)).reduce(func = sum)
QL= query().map(p— > (pkt_len)).reduce(func = sum)

Table 2: Example of Dos emulation.

throughput, and delay. The aforementioned data can be at-
tained by switch CPU via pulling from data plane counters
or receiving packet digests pushed by switching ASIC. As a
result, network operators get statistics they intend to acquire.

3.2 Template-based packet generation

It is hard for switching ASIC to customize properties like
packet size or payload. Therefore, we decouple users de-
mands as two types: demands that should be configured as
template packets generated in switch CPU and demands that
should be realized in switching ASIC. Our original design
compiles users’ demands by python and P4 programs. We fur-
ther develop network testing API (NTAPI) [16] to represent
testing intents using a similar programming model with the
stream processing frameworks (e.g., Flink [26]). NTAPI [16]
uses network stream trigger to describe generation tasks and
network stream query to describe analysis tasks. NTAPI uses
the set primitive to define packet header, payload, packet size,
injection interval, injection port, and loop (i.e., how many
times the template packet stream should be generated).
Table 2 provides an example of representing Dos emula-
tion. The trigger T describes the generation task and cor-
responds to a template packet stream about the generation.
First, HYPERGEN initializes the template TCP SYN packets
with certain header fields and payload. Then, HYPERGEN
generates the code and configurations for mcast engine and
periodic timer (Figure 3) to realize the rate of 10Mpps and
forward generated packets to the destination port. At last,
HyPERGEN generates the code for modifying testing traf-
fic. In this case, HYPERGEN sequentially sets the source IP
address and source port as values in the range. The query
describes the analysis tasks. Q! records the number of gener-
ated packets, and Q) records the number of received packets.

3.3 Packet generation pipeline

As Figure 2 illustrates, packet generation pipeline consists
of three components that perform acceleration, replication,
and edition sequentially on template packets. Besides, Figure
3 shows the component layout inside switching ASIC, and
the meaning of different line types are identical to Figure 2.
Accelerator. By using accelerator, HYPERGEN accelerates
template packets to 100GbE full line rate in negligible time.
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Figure 3: Component layout of packet generation
pipeline in RMT.

Accelerator forwards template packets into a loop via recir-
culation (a general primitive supported by P4-programmable
hardware). Switching ASIC realizes recirculation by setting
the port as loop-back mode and forwarding packets back to
ingress directly after leaving egress Tx queue and serializa-
tion. Our experiments testify that Tofino [15] can recirculate
packets at a speed of no less than 100Gbps. Thus, the template
packets never leave the switch and serve as a stable high
rate packet source for the replicator through recirculation.
Replicator. Replicator executes conditional packet replica-
tion on the looping template packets. Replicator designs a
nanosecond-level periodic timer to adjust rate via adjusting
inter-departure time (i.e., the gap time between two packets).
Once the timer expires, replicator conducts replication via
multicast, a general primitive supported by many switches
that replicates packets to multiple ports simultaneously. The
timer threshold can be set the same way as header modifica-
tion in editor, which means replicator manages to generate
packets as constant rate, regularly changing rate or ran-
dom distribution. Evaluations (§4.2) prove replicator achieves
strong similarity and generality.

Editor. After replication, generated packets are identical to
template packets. Editor conducts per-packet modification
on packets to form testing traffic. Editor supports four types
(constant value, given value list, arithmetic progression, ran-
dom values according to a certain distribution) of header
field modification on parsed header fields.

The first one is the constant value that can be set in tem-
plate packets. The second one is the given value list. Edi-
tor implements a periodic counter to record packet ID and
provide table matching from packet ID to given value list.
For instance, we can assume users intend to set the TCP
source port to 80, 81, 82 sequentially. If the packet ID is 2,



the editor sets the TCP source port to 81 and increases the
packet ID to 3. The third one is the arithmetic progression
(i.e., adding or subtracting over a certain value every time),
similar to the implementation of the given value list. The
fourth one is the random values according to a certain distri-
bution. P4 only supports a uniform random generator (i.e.,
modify_field_rng_uniform). Editor implements the inverse
transformation method [27] with two tables. Through the
inverse transformation method, editor can generate values
based on arbitrary distributions as long as the cumulative
distribution function is provided.

3.4 Limitation

Although HypPERGEN reconciles the goal of high-performance
and flexible with limitations on programability and resources
through the aforementioned designs, it is responsible for us
to claim the limitations of our designs.

Limitation of template-based packet generation. Since
we use the recirculation operation to accelerate template
packets, there are conflicts if the task needs too many tem-
plate packets and strict order. Our experiments prove that
recirculation RTT of a 64-byte template packet is about 600ns,
which means the maximum number of template packets that
one loop-back port can accelerate sequentially is nearly 100.
Therefore, HYPERGEN is not competent if the task can only
be represented with a large number of template packets with
high relevance (e.g., packet trace replaying according to cap-
tured traffic). Using more ports for loop-back can ease the
problem of too many template packets if we can loosely
assume irrelevant among template packets.

Limitation of programmable switching ASIC. Tofino
only supports modifying the first 1500 bytes of packets.
Therefore, HYPERGEN is not competent for tasks that need
involved modification on payload of the generated traffic
(e.g., IPSec testing that requires decryption or encryption
over the payload). Besides, we use stateless connections [16]
to avoid a huge amount of connection states, which requires
connection state transitions in the task can be explicitly
triggered by packets (e.g., SYN and SYN+ACK for TCP hand-
shaking). Therefore, HYPERGEN cannot support tasks whose
connection state transitions are not triggered by packets
(e.g., emulate duplicated ACK behaviors). Users can modify
HyPERGEN to support specific stateful tasks, but scalability
may be a challenge due to the limited storage.

3.5 Uniqueness
The novelty of HyperGen can be summarized as follows:
e Propose the idea of leveraging programmable switch-
ing ASIC to build a packet generator.

o Present template-based packet generation to co-design
switch CPU and switching ASIC.
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Figure 5: Accuracy of constant rate generation.

e Design packet generation pipeline in switching ASIC
for high-performance packet generation with limited
programmability and resources.

4 RESULT AND CONTRIBUTION

We compare HyperGen with a widely used DPDK-based
packet generator, MoonGen [11]. We hope to call attention
that MoonGen is a software-based approach, while Hyper-
Gen leverages the capability of programmable switching
ASIC. In our defense, we do not have access to commercial
hardware packet generators, and we have described the ca-
pability of hardware approaches in related work with no
partiality. Besides, we have claimed the limitations on flex-
ibility in detail in §3.4 to clarify what HYPERGEN cannot
do.

4.1 Experiment setup

We implement a prototype of HYPERGEN (HG) on Wedge
100BF-32X equipped with Tofino and 32 100GbE ports. Tak-
ing the consideration of reserving ports for normal functions
in a practical network, we use one port for recirculation and
four ports for multicast in our testbed. Experiments prove
users can use more ports for recirculation to support more
template packets and use more ports for multicast to achieve
a higher rate(i.e., over 1Tbps)'. We use a server with 64GB
RAM and 8 2.10GHz CPU cores to run MoonGen (MG). We
employ another programmable switch with precise times-
tamps to evaluate traffic generated by HyperGen and Moon-
Gen to avoid involving errors of different timestamps.

IThe capability of recirculation and multicast can be observed by imple-
menting the packet counter at egress pipelines of the same switching ASIC.
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4.2 Results

Packet generation throughput. Figure 4 shows the eval-
uations of throughput that HyPERGEN and MoonGen can
achieve under different packet sizes and configurations. The
evaluations using one single port and multiple ports demon-
strate HYPERGEN can achieve full line-rate of 400Gbps in our
testbed, which outperforms MoonGen with 8 cores.
Constant rate generation. We evaluate the quality of gen-
erated traffic by measuring the inter-departure time between
two generated packets, which can be achieved by record-
ing the ingress timestamps when the switch receives the
generated packets in the idle network. Figure 5(a) illustrates
the distribution of inter-departure time under different rate
configurations. HYPERGEN preserves accurate towards the
configured rates, while MoonGen performs well at 0.1Mpps,
moderate at 1Mpps, inaccurate at 10Mpps. One possible rea-
son is that DPDK-based packet generation has to generate
a batch of packets at one time to reach the high rate, ac-
counting for the mainly inter-departure time of MoonGen
is between 20ns and 70ns. Meanwhile, MoonGen adjusts
the gap between batches of packets to make the average
inter-departure time 100ns for 10Mpps. Figure 5(b) shows
the statistical metrics of different packet sizes at 1Mpps. We
calculate the average inter-departure time as well as Root
Mean Squared Error (RMSE). Both HYPERGEN and MoonGen
have good accuracy at average inter-departure time. HYPER-
GEN has much lower RSME, which means the generated
traffic can be more precise to constant rate.

Random distribution generation. We also test the capa-
bility of generating packets in random distribution. Figure 6
draws the Q-Q plot of normal distribution and exponential
distribution. The results claim that HYPERGEN is capable of
generating random numbers obeying a specific distribution
with extreme similarity and generality.

4.3 Contribution

We present HYPERGEN, a high-performance, flexible packet
generator with competitive cost using programmable switch-
ing ASIC. We propose template-based packet generation to
decouple tasks and dispatch demands between switch CPU
and switching ASIC to improve flexibility. We propose a
new pipeline design inside switching ASIC to support high-
performance packet generation, which is creative and can

be enlightening for other pipeline-based packet processing
hardware. Our experiments prove HyperGen supports line-
rate packet generation with high quality. HYPERGEN now
serves as a significant component in a mature network tester
and is competent for many complicated testing tasks.
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