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I. PROBLEM AND MOTIVATION

At the edge, IoT devices are designed to consume the
minimum resource to achieve the desired accuracy. However,
the conventional processors, such as CPU or GPU, can only
conduct all the computations with predetermined but some-
times unnecessary precisions, inevitably degrading their en-
ergy efficiency. When running data-intensive applications, due
to the large range of input operands, most conventional pro-
cessors heavily rely on floating-point units (FPUs). Recently,
approximate computing has become a promising alternative
to improve energy efficiency for IoT devices on the edge,
especially when running inaccuracy-tolerable applications. For
various data-intensive tasks on edge devices, multiplication is
a common but the most energy consuming one among different
floating-point operations. As a common arithmetic component
that has been studied for decades [1]–[3], the past focus on the
FP multiplier is accuracy and performance. It is then observed
that significant energy and time are spent on FP multipliers
computing highly accurate outputs that are not necessarily
demanded for various inaccuracy-tolerable tasks.

Recently, with awareness of the compromise between the
stringent resource constraint and the accuracy tolerance for
edge tasks, researchers have growing interests in designing an
approximate FP multiplier to improve energy efficiency [4]–
[6]. However, how to achieve an optimal approximation
while guarantee unbiased error distribution remains an
open question. This is not a trivial task: (1) Unlike the
many approximations in prior work that stem from heuristic
findings [4]–[7], it is desired to formally define the problem,
including objective function and constraints, to enable the
theoretically sound basis for optimal approximation. (2) In
addition to optimality, the approximate FP multiplier needs to
be unbiased to support consecutive multiplications commonly
met in edge tasks, which is also not straightforward. (3) Last
but not the least, the underlying architecture should facilitate
the circuitry implementation to prevent exponentially growing
area complexity for higher precision requirements. In this
work, we proposed an optimally approximated FP multiplier
to address the aforementioned challenges. With the support
of a theoretically sound formulation that turns multiplication
approximation to an optimization problem, a multi-level archi-
tecture is proposed to easily incorporate unbiasedness, runtime
configurability and module execution parallelism. To reduce
the design complexity, an optimization scheme is applied,

making the proposal linearly (instead of quadratically or
exponentially) dependent on the precision. The efficiency and
advantages of the proposed design has then been demonstrated
by extensive experiments.

II. BACKGROUND AND RELATED WORK

Many prior designs on approximate multiplier attempt to
tackle the problem either from gate or algorithmic levels
to reduce the product bit-width or critical path delay. For
example, some work uses approximate components, such as
compressors, to build the multiplier, so as to speed up addition
or partial product generation [7]–[12]. [7] leverages a modified
2×2 block to construct the inaccurate multiplier. However,
the error is hard to control and unbiased error distribution
cannot be guaranteed due to its gate level design. On the
other hand, configurability is highly demanded for versatile
edge scenarios. To address these issues, some work try to
approximate multiplication from a higher design level. In [13],
researchers propose to truncate the bits after the leading one
to conserve energy and replace the truncated part with a ”1”
to have unbiased error distribution. [4], [5] utilize hybrid
methods with both inaccurate and accurate multipliers to adjust
the computational accuracy, thereby causing significant area
consumption. Recently, ApproxLP is proposed to approximate
the mantissa product using linear fitting [6]. The design
has much higher performance for the given error rate when
compared to the prior solutions, but also suffers from non-
trivial area overhead and biased error distribution.

III. APPROACH AND UNIQUENESS

A. Problem Formulation

To achieve optimal approximation, we need to formally
formulate the problem which can incorporate specified design
targets. For the multiplication of two normalized FP numbers,
the target function can be defined as:

f(x, y) = xy, (1)

where x and y are two mantissas within the range of [1, 2).
Our idea is to project the complex multiplication function to
another space V with lower dimension. Specifically, we select
a group of bases 1, x, y, x2, y2 to decouple the two inputs. We
then can define:

V = span(1, x, y, x2, y2). (2)



Given two continuous functions g(x, y) and h(x, y) in the
domain of [x1, x2]× [y1, y2], we can define their inner product
as:

< g, h >=

∫ x2

x1

∫ y2

y1

g × h dx dy. (3)

It can be easily proved that the selected five bases are linearly
independent when x2 > x1 ≥ 0 and y2 > y1 ≥ 0. It is
obvious that f /∈ V , so that an approximate projection of the
multiplication f to the space V is necessary. As vectors in
V are the linear combinations of the selected bases, we can
define the following approximate function:

fapprox = k0 + k1x + k2y + k3x
2 + k4y

2. (4)

Without loss of generality, we can choose square distance as a
mathematically friendly error measurement within the domain
[x1, x2]× [y1, y2]:

||f − fapprox||2 =< f − fapprox, f − fapprox > . (5)

To achieve the approximation with the minimal deviation from
the original function, we can minimize the square error in
Eq. (5), and obtain the following solution for ki’s:
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(6)

Note that the formulation above is not limited to the square
error and these selected bases, but applicable to other different
error measures and bases. Since the coefficients of the square
items are both zero, the optimal approximation can be re-
expressed as:

f = xy ≈ f∗
approx = k∗0 + k∗1x + k∗2y. (7)

For the error between f and f∗
approx, it can be found that

the error distribution by its nature is symmetric around zero,
making the error unbiased. In addition, as the square error is
proportion to the cube of the domain area (x1 − x2)(y1 −
y2), which implies the total error can be further reduced by
partitioning the domain into smaller sub-domains. Given the
specified number of sub-domains, it can be proved that the
total error is minimized when and only when the area of each
sub-domain is equal.

B. Architecture for the Proposed Multiplier

Based on those theoretical findings, we design a multi-
level architecture for the proposed FP multiplier as in Fig.
1. Level 0, as the basic approximation module, provides
an initial estimation f0

approx, while the deeper levels act as
error compensation to gradually improve the overall accuracy.
Thus, the run-time configurability can be easily realized by
specifying the desired depths. We can then minimize the total
error by recursively partitioning the underlying domain into
4 sub-domains and obtain 4n sub-domains in total for n
level approximation, each with an area of 1

4n . If we denote
∆fi = f i

approx − f i−1
approx as the difference between two

approximations with 4i and 4i−1 sub-domains, which provides

the deviation from a finer granularity partitioning to a coarser
one. Then ∆fi is also the output of the ith level error com-
pensation module in Fig. 1. The proposed architecture simply
implements the configurability and approximation through the
control of partitioning granularity as follows:
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Fig. 1. Architecture of the proposed approximate multiplier.

fn
approx = f0

approx +

n∑
i=1

∆fi. (8)

∆fn =

{
1.5x + 1.5y − 2.25, n = 0,

y[n]?(x):(−x)+x[n]?(y):(−y)
2n+1 + on, n > 0.

(9)

where the pre-calculated constants on

on = ˆxn−1 × ˆyn−1 − x̂n × ŷn. (10)

x̂nis the middle of the interval that x belongs at level n.
For example, if x = 1.01010 in binary, then x̂4 = 1.01011
for the 4th level interval [1.0101, 1.0110]. For the constant
on, since there are 4n sub-doamins for level n, the circuit
implementation cost to store/compute on grows exponentially
with n, eventually impairing the multiplier efficiency. This is
also a common challenge that approximate multipliers using
fitted functions have to confront [6]. Thus, we here propose
to further optimize the formulation in Eq. (9) to significantly
reduce the area complexity.

x̂n − ˆxn−1 =
x[n]?(1) : (−1)

2n+1
, (11)

where ”? :” is the conditional operator and x[n] is the nth

bit of x. Then Eq.(9) can be simplified as follows:

∆fn =

{[(
x[n]?(1) : (−1)

)
× (y − ˆyn−1)

]
+
[(
y[n]?(1) : (−1)

)
× (x− ˆxn−1)

]}
� (n + 1) (12)

+
[(
x[n]⊕ y[n]

)
?(1) : (−1)

]
� (2n + 2).

In Eq. (12), the constant on has been merged to 3 additions
and 1 XOR operation. Thus, when n > 0, the proposed model
does not include any explicit multiplication. All the operations



it has are at most 1 XOR operation, 2 arithmetic negations,
and 5 additions, which can be implemented with much smaller
circuit cost. The complexity for each level can be reduced from
the exponential one in Eq. (9) to a constant one.

C. Design for Circuit-Friendly Implementation

The circuit implementation complexity in Eq. (12) can then
be further reduced by simplifying the output logic and using
a modified tree structure. Since the circuit implementations of
FP addition is not trivial in area, it is highly desired to further
optimize the addition operations. Eq. (12) can be further
simplified a more circuit implementation friendly expression
as below (the simplification details are not included here due
to the page limit):

∆fn = px,n + py,n + cn (13)

pxn =
{
x[n]� y[n : M ]

}
2n+1

+ {x[n]}M+n+1

pyn =
{
y[n]� x[n + 1 : M ]

}
2n+1

+ {y[n]}M+n+1

cn = −3/22n+2,

where � denotes the bit-wise exclusive-XOR (i.e., XNOR)
between x[n] and each bit of y[n : M ]; x[n] is the logic
negation of x[n]; x[i : j] is a binary string extracted from
the ith to the jth bits of the fractional part of x; and {z}i
is a fractional binary obtained by placing z from the ith bit
after the decimal point. To be consistent with the conventional
multiplier, pxn+pyn in each level of the proposed multiplier can
be considered as partial product, which can be implemented
as in Fig. 2(a) and then summed up to generate the output. This
sub-figure illustrates the dependency between partial products
in each level and the inputs. Thus, if we ignore the constant
part, the computation of Eq. (13) only involves two addition.

For the constant part, we can merge all such constants at
different levels into one. By simplifying the Level-0 approxi-
mation in Eq. (9) to:

∆f0 = 1.5(x− 1) + 1.5(y − 1) + 0.75, (14)

we can combine the constant 0.75 together with the other
constant terms from the n levels as:

0.75−
n∑

i=1

3

22i+2
= 0.5 +

1

22n+2
. (15)

Eq. (15) indicates that, when given the approximation level
of n, instead of actually computing Eq. (15), we can directly
construct the sum of all the constants by setting the 1st and
the (2n + 2)th bits to 1, as shown in Fig. 2(b).

With the discussions above, we can now optimize the
original OAM architecture in Fig. 1 to a more circuit-friendly
implementation, as shown in Fig. 3. Fig. 3 illustrates the
dependency of the partial products in each level on the
inputs. As shown, There are 5 partial product in the basic
approximation level, including 4 which rely on the input and
1 constant offset that only relies the approximate level. Each
error compensation level contains 2 partial products that rely
both on the input mantissa and the approximate level.
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Fig. 3. Optimized architecture for the proposed approximate multiplier.

To speed up the partial products reduction, a tree structure,
e.g., Wallace tree, is commonly used. However, a partial
product reduction structure designed for an accurate multiplier
cannot be directly applied to the proposed approximate mul-
tiplier with run-time configurability, as the target approximate
level is not fixed. We here propose a new tree structure
for partial product reduction in our approximate multiplier,
which can switch among different approximate levels within
one circuit. An example multiplier configurable among the
approximate levels 2, 6, and 11, is shown in Fig. 4, where
the dot in the figure represents a partial product, the bracket
represents a 3-to-2 compressor, the dotted arrow represents a
direct wire transferring the partial product to a latter stage.
The tree has three output nodes marked with red rectangles
corresponding to the approximation levels of 2, 6, and 11,
respectively. As shown in the figure, for a target approximate
level lower than 2, the multiplexer selects two summation from
the nodes at stage 4. For the approximation level between 2
and 6, the multiplexer takes the other two summations at stage
6. Thus, when working at a lower approximation level, the
partial product reduction in Fig. 4 does not need to go through
the entire tree structure so as to reduce the critical path delay,
which is an appealing feature for run-time configurability. Note
that Fig. 4 only shows the structure for the approximation
levels of 2, 6, and 11. The proposed structure in Fig. 4 can
be easily truncated or modified to adapt to a particular level.
When running at lower approximation levels, the tree branches
can be power gated to prevent the unnecessary computations
for unwanted approximation levels.
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D. Uniqueness

The novelty and uniqueness of this work are summarized
as follows:

1) We propose a theoretically sound optimization for-
mulation to optimize the approximation error of the
approximate multiplier and act as the basis for multiplier
architecture design. With the proposed formulation, the
error is symmetrically distributed, yielding an unbiased
error distribution.

2) A common issue of the prior approximate FP multiplier
is the exponentially growing area complexity with the
increased precision requirements. With the proposed ar-
chitecture, we can reduce the area complexity from O(4n)
to O(n), where n is the number of approximation levels,
while ensuring the same accuracy quality.

3) We explore detailed optimization for circuit-friendly im-
plementation. With our optimized architecture, the num-
ber of partial products has been greatly reduced and
all levels can be simultaneously invoked and executed.
Besides, a modified tree structure is proposed to enable
runtime configurability and fast execution.

IV. RESULTS AND CONTRIBUTIONS
The proposed design is evaluated with both software and

hardware implementations. The software implementation can
be deployed in various applications like multimedia and
neural-networks by replacing the existing FP multiplier unit
with the proposed approximate one to measure accuracy. For
hardware cost evaluation, we implement the proposed designs
in Verilog HDL and then synthesize with Synopsys Design
Compiler using the UMC 40-nm library. The power and delay
are measured using Synopsys PrimeTime. In our evaluatios, we
first compare the proposed design with ApproxLP [6], which
was reported to have SOTA performance in almost all the
aspects when compared to the prior work. We then evaluate the
software performance in terms of quality and energy efficiency
for various applications using the proposed multiplier.

A. Quantitative Comparison to Prior Work

Due to the capability of parallel execution and lower
hardware cost, the proposed multiplier has a much smaller
delay than ApproxLP with 3.6-24.2% delay improvement for
the same approximation level. This is due to the fact that
ApprxoLP requires time-consuming comparison before any
computation. In addition, the proposed design is also more
compact and can eventually achieve 5.5-16.1% area-delay
product (ADP) improvement over ApproxLP. Moreover, it
is noted that while ApproxLP has an exponentially growing
complexity, our design is circuit-implementation-friendly with
a linear complexity. Thus, our approximate multiplier can not
only support low precision computation like [6], but also be
extended to a much higher accuracy level like Levels 6 and
11 to support high-precision computation. When compared
to an accurate FP multiplier, we can obtain 33-57% ADP
improvement and 56-61% delay improvement. Thus, the pro-
posed multiplier has very good flexibility to support various
scenarios with reasonable hardware overhead.

We further compare the accuracy of the proposed design
w.r.t. ApproxLP for different error measures and different
approximation levels. For the same approximation level, the
proposed design is able to achieve higher accuracy for all the
error measures, with 23–37% accuracy improvement. Fig. 5
shows the error distribution of the proposed design and Ap-
proxLP. The proposed design can achieve a much tighter error
distribution with smaller standard deviation than ApproxLP,
indicating consistently more accurate approximation. Note that
for ApproxLP [6] at Level 0, the distribution is only half-sided
and hence results in biasedness in the error distribution.

Prop. Std
0.08

Imp. -9.6% Prop. Std
0.021

Imp. 27% Prop. Std
0.005

Imp. 27%

Fig. 5. Error distribution comparison between the proposed multiplier and
ApproxLP [6] for different approximation levels (0-2).

B. Application Level Efficiency

We evaluate the efficiency of the proposed multiplier on
several multi-media processing and machine learning ap-
plications. MNIST(MLP) refers to the execution of a 5-
layer multi-layer perceptron (MLP) on MNIST dataset, while
MNIST(CNN) and CIFAR-10 refer to the execution of a pre-
trained AlexNet on MNIST and CIFAR-10 datasets, respec-
tively. The embedded approximate multiplier is configured to 4
levels of approximation (Level 0, 1, 2, 6). The reported energy
consumption of the multipliers are obtained from PrimeTime
PX. Multi-media processing tasks are evaluated with the
metric of Peak Signal to Noise Ratio (PSNR), while machine
learning tasks use accuracy loss as the accuracy measure.

Table I reports PSNRs and accuracy losses for all the
tasks. Machine learning tasks have a strong resilience to the



TABLE I
COMPARISON OF PSNR/ACCURACY LOSS, ENERGY AND EDP IMPROVEMENTS FOR DIFFERENT OPENCL, MULTI-MEDIA PROCESSING AND MACHINE

LEARNING TASKS USING THE PROPOSED APPROXIMATE MULTIPLIER WITH DIFFERENT LEVELS OF APPROXIMATIONS.

Application PSNR(dB)/Accuracy Loss(%) Energy Improvement EDP Improvement
Level 0 Level 1 Level 2 Level 6 Level 0 Level 1 Level 2 Level 6 Level 0 Level 1 Level 2 Level 6

Random Input 45.66 57.71 69.74 117.9 7.58 × 5.03 × 3.43 × 1.77 × 21.77 × 11.98 × 7.89 × 3.19 ×
Audio FFT 63.32 76.60 89.54 138.1 7.79 × 4.20 × 2.83 × 1.37 × 22.37 × 10.00 × 6.49 × 2.47 ×
RGB-to-Gray 35.52 53.42 61.32 105.6 3.05 × 2.03 × 1.24 × 0.64 × 8.76 × 4.84 × 2.84 × 1.15 ×
Gauss Blur 49.69 56.68 64.55 111.1 2.40 × 1.42 × 0.87 × 0.43 × 6.90 × 3.38 × 2.01 × 0.78 ×
CIFAR-10 0.29% 0.01% 0% 0% 7.12 × 4.62 × 3.19 × 1.63 × 20.46 × 11.00 × 7.33 × 2.93 ×
MNIST(CNN) 0.02% 0% 0% 0% 6.72 × 4.52 × 3.25 × 1.67 × 19.31 × 10.76 × 7.47 × 3.01 ×
MNIST(MLP) 0.11% 0.02% 0% 0% 6.80 × 4.58 × 3.28 × 1.67 × 19.54 × 10.89 × 7.53 × 3.00 ×

errors with consistently small accuracy loss. From the table,
even with Level 1 approximation, we can achieve 39-57dB
for the multi-media processing tasks and almost negligible
accuracy loss (0-0.02%) for machine learning tasks. A higher
approximation level, e.g., Level 2, can further improve the
PSNR and accuracy loss to almost 0%.

Table I also compares the normalized energy and energy-
delay-product (EDP) improvements by the proposed multiplier
in comparison to a full-precision FP multiplier. For the tasks
like Gauss Blur, one input to the multiplier is almost kept
constant during the execution, which simply implies there are
fewer non-zero bits, and results in fewer bit switching and
energy consumption. Thus, for those tasks, EDP improvements
by the proposed multiplier are limited, with only 6.9×, 3.38×,
and 2.01× on average for Level 0, 1 and 2, respectively. For
the tasks like machine learning and audio processing, they
have more varying inputs and non-zeros in the FP numbers.
This significantly increases the bit switching activity and hence
the power consumption, eventually resulting in huge benefits
using the proposed multiplier. In particular, for CIFAR-10, the
average EDP improvements for Level 0, 1 and 2 approximation
can reach 20.46×, 11×, and 7.33×, respectively.

C. Contributions

After 2-year research in this area, the efforts have resulted
in 2 first-author papers published in the premier EDA
conferences (ICCAD’20 and SoCC’20), 1 granted patent
and 1 transaction paper in preparation. This work was not
only awarded the Golden Metal in ACM/ICCAD SRC but
also received the ICCAD’20 Best Paper Award nomination
(6 out of 470 papers). To conclude, this work proposed
an efficient run-time configurable approximate multiplier. The
multi-level architecture can easily incorporate the run-time
configurability without incurring much area overhead, and
naturally reach optimal approximation with unbiased error
distribution. Our evaluations on various aspects show that
the proposed design has comprehensive advantages over prior
multiplier designs and is able to outperform SOTA design in
terms of accuracy, area, and delay.
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