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1 PROBLEM AND MOTIVATION
Deep neural networks have received an explosion of interest for their
superior performance in various intelligent tasks and high impacts on
our lives. The computing capacity is in an arms race with the rapidly
escalating model size and data amount for intelligent information
processing. Practical application scenarios, e.g., autonomous vehicles,
data centers, and edge devices, have strict energy efficiency, latency,
and bandwidth constraints, raising a surging need to developmore effi-
cient computing solutions. However, as Moore’s law is winding down,
it becomes increasingly challenging for conventional electrical proces-
sors to support such massively parallel and energy-hungry artificial
intelligence (AI) workloads. Limited clock frequency, millisecond-level
latency, high heat density, and large energy consumption of CPUs,
FPGAs, and GPUs motivate us to seek an alternative solution using
silicon photonics. Silicon photonics is a promising hardware platform
that could represent a paradigm shift in efficient AI acceleration with
its CMOS-compatibility, intrinsic parallelism of optics, and near-zero
power consumption. With potentially petaFLOPS per mm2 execu-
tion speed and attojoule/MAC computational efficiency, fully-optical
neural networks (ONNs) demonstrate orders-of-magnitude higher
performance than their electrical counterparts [1–6]. However, previ-
ous ONN designs have a large footprint and noise robustness issues,
which prevent practical applications of photonic accelerators.

In this work, we propose to explore efficient neuromorphic com-
puting solutions with optical neural networks. Various photonic inte-
grated circuit designs and software-hardware co-optimization meth-
ods are explored and presented here to enable high-performance
photonic accelerators with lower area cost, better energy efficiency,
higher variation-robustness, and more on-device learnability.

2 BACKGROUND AND RELATEDWORK
Optical computing has been demonstrated as a promising substitution
for electronics in efficient artificial intelligence due to its ultra-high
bandwidth, sub-nanosecond latency, attojoule/MAC energy efficiency.
The early research efforts focus on diffractive free-space optical com-
puting, optical reservoir computing [7], and spike processing [8, 9]
to achieve optical multi-layer perceptrons (MLPs). Recently, the in-
tegrated optical neural networks (ONNs) have attracted extensive
research interests given their compactness, energy efficiency, and
electronics-compatibility [1, 3, 4, 6]. Figure 1 shows the ONN design
stack, including architecture and circuit design, model optimization,
and final deployment and on-chip training. Due to the complexity
of photonic analog circuit design and non-ideality in physical chip
deployment, the power of ONNs will not be fully unleashed without
careful optimization on scalability, robustness, and learnability.

In the first design stage, neural architectures and their correspond-
ing photonic circuits will be jointly designed to map neurocomput-
ing to optical components. Previously, Shen et al. [1] successfully
demonstrates a singular-value-decomposition-based coherent ONN
constructed by cascaded Mach-Zehnder interferometer (MZI) arrays,
shown in Fig. 2(a). Their photonic tensor core prototype demonstrates
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Figure 2: (a) Matrix multiplication achieved by cascaded MZI
arrays [1]. (b) Micro-ring resonator (MRR) based ONN [13].

order-of-magnitude higher inference throughput and comparable ac-
curacy on the vowel recognition task compared with GPUs [1]. Zhao
et al. [10] proposed a slimmed ONN architecture to cut down the
area cost by 30-50% through a software-hardware co-design method-
ology. These architectures generally have a large area cost and low
robustness due to phase accumulation error in the cascaded MZI
meshes [11, 10, 12]. Micro-ring resonator (MRR) based incoherent
ONNs have been proposed to build MRR weight banks for matrix
multiplication [13, 14], shown in Fig. 2(b) the MRR-ONN has a small
footprint, but it suffers from robustness issues due to MRR sensitivity.
To enable scalable optical AI accelerators, novel photonic structures
are in high demand to construct compact, efficient, and expressive
optical neural architectures.

Given an ONN architecture, the second stage is to perform ONN
model optimization. Specifically, we need to determine the optical
component configurations that can achieve the AI tasks with high per-
formance and fidelity. Previously, hardware-unaware model training
is adopted to obtain a theoretically trained ONN model. However, the
trained ONN weights are not necessarily implementable given limited



device control precision and non-ideal process variations [11, 12, 15].
Prior work exists to show that the error accumulation effects cause un-
desired sensitivity of analog ONN chips to noises, which generally lead
to unacceptable accuracy drop and even complete malfunction [11, 15].
However, existing training methods lack practical estimation of de-
vice non-ideality, which leaves a large room for hardware-software
co-design to bridge the performance gap between theoretical models
and the physically deployed ONN chips.

The third stage happens after ONN chip manufacturing. Once there
is any change in the environment, tasks, or data distribution, auto-
matic tuning and on-chip training will be performed in situ to calibrate
the circuit states and quickly adapt the ONN chip accordingly. Thanks
to the ultra-fast execution speed and reconfigurability of silicon pho-
tonics chip, ONNs are also perfect self-learning platforms. Such self-
learnability is especially beneficial to offload centralized cloud-based
training to resource-limited edge devices, which not only saves ex-
pensive communication cost but also boosts the intelligence of edge
computing units. To enable such on-device learnability, prior work at-
tempts to perform in situ ONN training to boost the training efficiency.
Brute-force device tuning [1] and evolutionary algorithms [16] are
proposed to search for an optimal device configuration with a large
number of ONN queries. Adjoint variable methods [17] are applied to
directly generate and read out the gradients w.r.t. device configura-
tions in-situ to achieve parallel on-chip backpropagation. Though the
training speed is already orders-of-magnitude higher than software
training, their scalability and robustness are inadequate for practi-
cal on-chip learning due to algorithmic inefficiency or prohibitive
hardware overhead.

Overall, existing studies still fail to provide hardware-efficient, ro-
bust, and self-learnable ONN designs. Hence, better ONN architecture
designs and advanced circuit-algorithm co-optimization are still in
great demand. Therefore, we propose a holistic ONN design solution
to help build scalable, reliable, and adaptive photonic accelerators
with the following methodologies that can be fully integrated,

• Frequency-Domain ONN Architecture: for the first time,
the neural computing is mapped to a general optical frequency
domain with massive parallelism. We propose a compact and
energy-efficient ONN architecture based on learnable photonic
butterfly meshes. A hardware-aware structured pruning is ap-
plied to further boost the hardware efficiency by ∼ 10× [18–20].

• Nonideality-Aware ONN Optimization: limited device con-
trol resolution and process variations are considered during ONN
optimization for the first time. A noise-aware quantization flow
is proposed to achieve considerable robustness improvement
under practical circuit variations with minimum training over-
head [11, 12].

• Efficient ONN On-Chip Learning: we propose an efficient
ONN on-chip learning framework, which is the first to enable
scalable and self-learnable intelligence in integrated optics. Our
power-aware sparse zeroth-order optimization flow consider-
ably boosts the on-device training speed by 3-8×, scalability by
∼ 20×, and saves >90% training power consumption [21, 22].

As shown in Fig. 1, the proposed algorithms focus on different stages
of the ONN design stack and synergistically put forward the practical
application of photonic AI accelerators.

3 APPROACH AND UNIQUENESS
In this study, we propose a holistic solution to enable efficient pho-
tonic accelerator design, including a learnable frequency-domain ONN
architecture FFT-ONN for improving area efficiency, a noise-aware

quantization schemeROQ for robust ONNdesign, and an efficient ONN
on-chip learning framework FLOPS leveraging stochastic zeroth-
order optimization for in situ ONN training.

3.1 FFT-ONN: Hardware-Efficient ONN
Architecture

Though ONNs have ultra-fast execution speed, they typically have
large area cost due to the physical limits of the optical devices. Previ-
ous MZI-based ONNs [1, 10] consume a large number of MZIs, thus
fail to provide efficient and scalable photonic solutions. We focus on
answering the following critical questions: 1) how to construct a new
ONN architecture using much fewer optical components without sac-
rificing its expressiveness, 2) how to efficiently map high-dimensional
neural networks to 2-dimensional (2D) photonic integrated chips
(PICs), and 3) how to further cut down the power consumption of
optical devices with minimum performance degradation [18–20].

Proposed Frequency-Domain Optical MLP : To remedy the area cost
issue, we propose a novel optical multi-layer perceptron architecture
based on fast Fourier transform, as shown in Fig. 3 Instead of imple-
menting general matrix multiplication, we adopt a block-circulant
weight matrix as an efficient substitution. This block-circulant matrix
can efficiently realize restricted linear projection via an FFT-based fast
multiplication algorithm. After transformed into the Fourier domain,
matrix multiplication can be cast to lightweight element-wise multi-
plication between two Fourier-domain signals. A photonic butterfly
network is designed using compact photonic devices to achieve on-
chip optical FFT/IFFT. Frequency-domain weights are implemented in
the element-wise multiplication (EM) stage to achieve complex-valued
multiplication by leveraging the polarization feature of light. Opti-
cal splitter and combiner trees are designed to perform light-speed
fan-out and partial product accumulation, respectively. This frame-
work has provably comparable model expressivity with classical NNs.
Without sacrificing any classification accuracy, this frequency-domain
optical multi-layer perceptron [18] demonstrated 3-4× lower area cost
compared with previous ONNs [1, 10].
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Figure 3: FFT-ONN [18] architecture and ONN chip tape-out.

Proposed Frequency-Domain Optical CNN : To support highly paral-
lel 2D convolutional neural network (CNN) acceleration, we propose a
learnable frequency-domain optical CNN architecture FFT-ONN-v2,
which moves beyond the traditional FFT-based design methodology
and fundamentally differs from traditional im2col-based spatial
CNN accelerators. To match high-dimensional convolutions to 2D
photonic circuits, we map the convolution to spatial, temporal, and
spectral dimensions of the PIC, fully unleashing the massive paral-
lelism of ONNs. We decompose the 2D spatial convolution into two



cascaded 1D frequency-domain convolutions along rows and columns.
In the column-wise convolution, the feature maps are projected to the
frequency domain via learnable butterfly transform structures column
by column, multiplied by the frequency-domain kernels, and projected
again by the reversed transform.We use multiple ultra-compact micro-
disk (MD) weight banks to directly implement all complex-valued
kernels at one shot. We allow an augmented solution space for bet-
ter model expressivity without conjugate symmetry constraints in
the traditional FFT-based method. Wavelength-division multiplexing
(WDM) techniques are adopted to allow extensive hardware reuse and
massive parallelism across channels, leading to order-of-magnitude
area reduction and throughput improvement.
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Figure 4: FFT-ONN-v2 [19] on frequency-domain CNNs.

Proposed Power-Aware Optimization: The manually designed opti-
cal FFT module is a fixed structure with limited reconfigurability.
It can be sub-optimal in terms of area and power consumption. To
empower our ONN with joint learnability, the fixed FFT module is
relaxed into a general frequency-domain projection with a trainable
butterfly structure. All programmable devices in the transform are
jointly optimized during training to learn the best transform pairs au-
tomatically. We also employ hardware-aware fine-grained structured
pruning and progressively sparsify the phase shifters in the learnable
transform to cut down power consumption and the circuit footprint.

Overall Contributions: We propose a hardware-efficient ONN ar-
chitecture to break through the ONN scalability and efficiency. It
is the first time that neural computing has been mapped to a gen-
eral frequency domain for integrated optics. We move beyond the
traditional FFT-based NN design paradigm and propose an ultra-
compact frequency-domain ONN architecture with algorithmic and
hardware insights. We also adopt a hardware-aware pruning method
to further improve its area and power. Our compact and highly paral-
lel FFT-ONN-family achieves ∼10× area reduction and 10× device-
tuning power saving compared with previous ONNs.

3.2 ROQ: Noise-Aware Quantization Scheme for
Robust ONNs

As analog computing platforms, ONNs inevitably encounter robust-
ness issues due to process variations and a non-ideal environment.
The limited device control resolution, e.g., typically 4-bit, is another
practical factor that potentially induces undesired accuracy degrada-
tion. However, prior ONN model optimization methods lack effective
noise modeling, such that the deployed ONN model suffers from se-
vere accuracy drop or even complete malfunction [1, 11, 15]. Instead
of hardware-unaware ONN optimization, we focus on two aspects:

1) how to find quantized device configurations that honor control
resolution limits while maintaining model expressivity, and 2) how
to efficiently consider device variations into training to find a more
noise-resilient solution via hardware-software co-design [11, 12].
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Figure 5: ROQ [12] for robust ONNs under low-bit controls.

Proposed Differentiable ONN Quantization Flow: We target the gen-
eral photonic tensor core design based on MZI arrays [1], the most
challenging design without readily applicable prior quantization meth-
ods. MZI mesh simulation will be performed for hardware-aware
training to emulate the impact of low control resolution effects on the
unitary transfer matrix. The biggest challenge is the prohibitive cost
of propagating gradients through the discretized phase decomposi-
tion [1]. To efficiently tackle the optimization challenge for ONNs, we
propose a differentiable phase-domain quantization scheme, shown in
Fig. 5. In our proposed coarse gradient approximation algorithm, the
training engine directly bypasses the upstream gradients through the
entire discretized decomposition procedure. Then, we can efficiently
estimate the gradients w.r.t the unitary matrices. Each gradient de-
scent step will push the unitary matrices out of the unitary manifold,
which is illegal for the subsequent unitary decomposition. We adopt a
projected gradient descent optimizer to enable efficient optimization
in the discretized unitary space.

Proposed Protective Noise Injection: Optical devices inevitably have
non-ideal parameter drifts due to process variation andmanufacturing
error. To model this circuit noise in our quantization flow, we propose
a protective Group Lasso (PGL) regularization technique to explicitly
perform noise-adaptive optimization. Random device drifts estimated
from foundry PDKs will be injected to emulate the variation. A block-
wise robustness estimator will be used to assign a robustness score for
each block based on the induced errors. Highly sensitive weight blocks
will be suppressed to protect the ONN from accumulated errors.

Overall Contributions: Our noise-aware quantization scheme intro-
duces coarse gradient approximation and unitary projection algo-
rithms to enable differentiable ONN optimization with non-ideality
modeling. Our protective noise injection method efficiently considers
device noise modeling during training to improve the ONN noise
tolerance. Our proposed algorithm-circuit co-optimization method-
ology ROQ shows much better noise tolerance under low-bit device
controls and practical circuit variations, enabling general photonic
tensor accelerators with low control complexity and high robustness.

3.3 FLOPS: Efficient On-Chip ONN Learning
Besides inference acceleration, efficient on-device training is another
critical step in intelligent edge AI solutions, which requires efficient
learning protocols to be developed, especially for resource-limited
edge devices. However, traditional software-based ONN training suf-
fers the problems of expensive hardware mapping and inaccurate
variation modeling. Previous on-chip learning protocols are either
based on brute-force tuning [1] or evolutionary algorithms [16], which



fail to leverage the self-learning capability of ONNs due to algorithmic
inefficiency and poor variation-robustness. To enable ultra-fast train-
ing acceleration on self-learnable photonic neural engines, we propose
an efficient on-chip learning framework FLOPS [21, 22] to resolve
the scalability challenges using stochastic zeroth-order optimization.
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Figure 6: (a) ONN on-chip training framework and (b) sparse
mixed-training strategy [21, 22].

Proposed Zeroth-Order Learning Framework: As shown in Fig. 6(a),
ONN chips are naturally ultra-fast DNN forward accelerators. Hence,
we directly train optical devices on chip to achieve efficient in situ
optimization without costly gradient backpropagation. We propose
a stochastic zeroth-order gradient estimator to efficiently query the
ONN oracle for variance-reduced gradient descent. WDM techniques
are utilized to enable fully parallel evaluation on a mini-batch of train-
ing data, which considerably reduces the ONN query complexity. By
leveraging the ONN chip itself as an accurate in-situ variation model,
we can perform on-device training without expensive noise simula-
tion to efficiently recover the accuracy with high noise robustness
under post-deployment non-ideality.

Proposed Sparse Mixed-Training Strategy: On resource-constrained
edge platforms, critical barriers for on-device learnability are energy
budget and resource limits. We propose a mixed-training strategy with
two-level sparsity to improve the ONN training efficiency, shown in
Fig. 6(b). We partition the optical devices into passive and active
regions and only allow active devices to be trainable. Such parameter-
level sparsity considerably reduces the device programming power
and the inter-device crosstalk without degrading the model reconfig-
urability. During each optimization step, we also explore gradient-level
sparsity by randomly selecting a small subset of devices to update
their configurations. We further apply lightweight dynamic pruning
to explicitly optimize learning energy cost by randomly removing ex-
ploration steps with extra power cost, leading to order-of-magnitude
training power reduction without accuracy drop.

Overall Contributions: With the proposed on-chip mixed-training
framework applied, we can outperform previous on-chip learning
methods with 3-8× faster training speed, 3-5% higher robustness,
>20× better scalability, and over 90% power reduction.

4 RESULTS AND CONTRIBUTIONS
4.1 FFT-ONN: Hardware-Efficient ONN

Architecture
To validate the functionality and efficiency of our proposed ONN
architecture, we first perform optical simulation using commercial
tools Lumerical INTERCONNECT. Our model shows good fidelity
with <1.2% max relative error compared with theoretical results.

Experimental Results

⧫ MLPs: with learnable transforms and pruning

› 2.2× smaller area than FFT-ONN; ~7× smaller area than MZI-ONN

› >10× lower phase shifter programming power than MZI-ONN & FFT-ONN

› Much better robustness under phase noises

⧫ CNNs: with microdisk-based kernels 

› 5.6-11.6× smaller than MZI-ONN
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Figure 7: Area and power comparison with prior ONNs [1, 10].

We further compare the accuracy and hardware cost with prior
state-of-the-art (SOTA) ONNs [1, 10]. On several optical MLP and
CNNs with various benchmarks, e.g., MNIST and FashionMNIST, our
FFT-based optical MLP can save 2.2×-3.7× device usage compared
with prior ONNs [1, 10]. With our learnable transform and hardware-
aware pruning, the frequency-domain ONN architecture considerably
boosts the area efficiency by nearly 7× with 80-90% device program-
ming power reduction. We also compare the noise-robustness under
practical device variations. Our pruned butterfly structure demon-
strates superior robustness with much fewer noise sources. With 80%
structured sparsity, FFT-ONN-v2 maintains over 97% accuracy on
MNIST, while prior MZI-ONNs suffer from complete malfunction.

4.2 ROQ: Noise-Aware Quantization Scheme for
Robust ONNs

We evaluate the effectiveness of our proposed quantization scheme
on a four-layer ONN with the MNIST dataset and compare it with
naive hardware-unaware training and a baseline iterative quantiza-
tion method. Based on a pre-trained full-precision ONN model with
97.6% accuracy, we quantize the device control signals with 3- to 6-bit
precision and inject practical process variations.

(a) (b)

Figure 8: Robustness comparison between the proposed
scheme ROQ [12] and baseline methods.

Figure 8 shows that our proposed ROQ and protective regulariza-
tion technique (PGL) achieve the highest accuracy with the lowest
variances on all settings. With large device noises and only 3-bit reso-
lution, our method can boost the accuracy from ∼20% (baseline) to
80%. Our proposed ROQ effectively tackles the non-ideal issues of



ONNs via co-design and provides a low-overhead model optimization
approach towards noise-resilient ONN accelerators.

4.3 FLOPS: Efficient On-Chip ONN Learning
We compare the training efficiency with prior SOTA on-chip training
protocols in terms of the number of ONN forward, recovered accuracy,
and learning power consumption.
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Figure 9: (a) Learning curve comparison [21]. (b) Accuracy un-
der device variations [21]. (c) Learning curve with different
mixed-training sparsity 𝛼 [22]. (d) Deployed accuracy (DAcc),
Recovered (RAcc) accuracy, and power reduction [22].

Figure 9(a) and 9(b) shows that our FLOPS achieves 3-4× higher
learning efficiency with 3% higher robustness than prior arts [1, 16].
With our two-level sparse mixed-training strategy, the learning effi-
ciency is boosted by >7× compared with the baseline method [1],
shown in Fig. 9(c). Our optimizer can handle the ONNs training
with 2500 MZIs, showing >20× higher scalability than prior proto-
cols [1, 16]. With our dynamic power optimization, 96%-98% training
power is saved compared to our DAC-version [21], with marginal
overhead and negligible accuracy drop, shown in Fig. 9(d). Our pro-
posed on-chip learning solution enables scalable and fast on-device
training to facilitate intelligent and adaptive photonic accelerators.

4.4 Research Impacts
As the major focus of my Ph.D. researches, this study leads to 7 first-
authored publications [18, 12, 21, 19, 23, 24, 22] in premier EDA/-
CAD/ML journals and conference, such as TCAD, ASP-DAC, DATE,
DAC, and AAAI. In addition, this study leads to 2 invited paper [11]
at ICCAD 2019 [11], CLEO 2021 [25], and 11 co-authored high-
impact SPIE/Nature journals and conferences [2, 20, 26–28]. The
proposed design methodologies are built on advanced machine learn-
ing algorithms and solid physical optical modeling and facilitate the
entire ONN design flow. We pioneer the research in the area, and
our proposed FFT-ONN [18] received the Best Paper Award in ASP-
DAC 2020. The proposed FLOPS [21] was selected as one out of 6
Best Paper Finalists at DAC 2020. Our endeavor on optics-AI inte-
gration is well recognized by the academia, and we receive the Gold
Medal in ACM/SIGDA student research competition and the Best
Poster Award at NSF Machine Learning Hardware Workshop 2020.

Our ONN designs have a photonic neural chip tape-out with AMF for
measurement and prototype demonstration.
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