
ICFP: G: Formal Verification of a Lazy Software Model Checker
ARTHUR CORRENSON, CISPA Helmholtz Center for Information Security, Germany

1 PROBLEM & MOTIVATION
Model checking [5] is a formal method to automatically prove the
absence of bad behaviors in computer systems. In case the system
being checked is erroneous, model checkers expose a scenario lead-
ing the system to failure. Because of its fully automatic nature and
its ability to provide feedbacks when failures are detected, model
checking has had a tremendous impact in many fields including
software engineering, hardware design, and verification of critical
programs. However, relying on model checkers to asses the robust-
ness of critical systems yields an important question: why should we
trust these tools? After all, model checkers are nothing but computer
programs and are as prone to failure as the systems they analyze. A
natural reaction to this observation is to apply formal verification
techniques to the development of model checkers themselves.
In this work, we present a general framework to prove the cor-

rectness of model checkers with the help of a proof assistant such
as Coq [2], Isabelle/HOL [3] or Agda [1]. While this approach offers
an incomparable level of reliability, it is extremely expensive to
prove a program as complex as a model checker in a proof assistant.
Consequently, a key challenge was to make the framework general
enough to cover a wide variety of model checking techniques while
optimizing the sharing of already proven components. We show-
case the versatility of our method by implementing and proving in
Coq two seemingly different tools based on model-checking tech-
niques : a bug finder by symbolic execution and a program prover
by predicate abstraction.

2 BACKGROUND & RELATED WORK
Proving the correctness of critical tools with a proof assistant is
not a new idea [15]. The verified compiler CompCert [14] was a
milestone towards the achievements of this vision and subsequent
projects such as the Verified Software Toolchain initiative [4] or the
Versaco static analyzer [12] kept pushing the limit of this approach.

However, few model checkers have been formalized in a proof
assistant. To the best of our knowledge, the only realistic model
checker that has been proved in a proof assistant is due to Esparza
and his contributors [8]. They proved the correctness of an automata-
based LTL model checker in Isabelle/HOL. Other approaches have
been explored to improve the robustness of model checking algo-
rithm. One of these approaches is to generate certificates: the model
checker returns not only a result, but also witnesses that the result is
correct. These witnesses can then be checked by a human or an auto-
mated verifier. This is the approach followed by the model checkers
Slab [7] and Cubicle [16]. Both produce certificates that can later
be checked by an SMT solver. This method gives weaker guaran-
tees than a complete formal proof because the entity checking the
certificates needs to be trusted.

Author’s address: Arthur Correnson, CISPA Helmholtz Center for Information Security,
Saarbruecken, Saarland, Germany, 66123, arthur.correnson@cispa.de.

3 APPROACH & UNIQUENESS

3.1 It Is All About Searching for Bugs
While there exists different software model-checking techniques
with slightly different purposes, they all share a similar idea: search-
ing for bugs by exploring an abstraction of a program state space.
More formally, the state space of a program 𝑝 can be modeled as a
graph 𝐺𝑝 where vertices of 𝐺𝑝 are program states and there is an
edge between two states 𝑠1 and 𝑠2 (noted 𝑝 ⊢ 𝑠1 ↩→ 𝑠2) if executing
𝑝 from state 𝑠1 leads to state 𝑠2. Additionally, a set 𝐼 of initial states
and a set 𝐸 of erroneous states are identified. Model checking then
boils down to finding states of 𝐸 that are reachable from 𝐼 in 𝐺𝑝 .
If no such state is found, the program is bug free, otherwise it has
a bug. In practice, 𝐺𝑝 is infinite or extremely large and cannot be
efficiently computed. Therefore, an abstraction of the state space
𝐺𝑝 , is typically considered. Common abstraction techniques are
predicate abstractions [6, 11] or symbolic execution [9, 10, 13],

3.2 One Search Algorithm to Rule Them All?
In practical implementations, model checkers tightly pair the search
algorithm driving the exploration of the state space with the abstrac-
tion method used to approximate the state space. This results in
duplicated effort if one whishes to prove the correctness of different
model checkers based on different abstractions. We claim that this
can be avoided if the concern of implementing search procedures is
explicitly separated from that of designing relevant abstractions. In
particular, we show that the same search algorithm can be used to
power different model checkers regardless of the abstraction used
to model the state space. Moreover, we observed experimentally
that proving the correctness of search algorithms represents a con-
sequent part in the formal proof of model checkers. On the contrary,
abstractions methods have been extensively studied in the model
checking literature and proving that they faithfully approximate
the state space of programs is relatively straightforward. This being
observed, several challenges had to be addressed in order to imple-
ment a generic search algorithm that can be shared between several
model checkers.

Exhaustiveness or Termination? Depending on the abstraction
technique, the graph 𝐺𝑝 might be finite (in which case it can be
exhaustively traversed in finite time) or infinite (in which case the
search might never terminate). In both cases, we would like to use
the same search algorithm and offer formal guarantees about the
exhaustiveness of the search. Therefore, a first challenge is to find a
suitable specification of the search algorithm that applies to both
the finite and the infinite scenario.

Search strategies. In practical implementations, model checkers
rely on various search heuristics to guide the search for bugs. The use
of such heuristics can drastically improve performances. However,
heuristics also have a direct impact on the exhaustiveness of the
search. A general search procedure should offer formal guarantees
regardless of the heuristics begin used.

HTTPS://ORCID.ORG/0000-0003-2307-2296
https://orcid.org/0000-0003-2307-2296

2 • Arthur Correnson

3.3 Our Solution
A Lazy Algorithm. We solve the challenges presented above with

a lazy search algorithm. This algorithm produces an infinite stream
of events. Each event either represents a visit to a state, or signals
that the search is over. Given a program graph 𝐺𝑝 , an initial set of
states 𝐼 and set of erroneous states 𝐸, we prove the following two
properties :

(1) A state occur in the stream of events if and only if it is a state
of 𝐸 reachable from 𝐼 in 𝐺𝑝 .

(2) If an event signaling that the search is over occurs at some point
in the stream, then no further state occurs afterwards

The combination of (1) and (2) ensures that all reachable erro-
neous states are enumerated before the first occurrence of a termi-
nation event (if any). We note that this specification offers useful
guarantees even if the graph begin searched is infinite. In this case,
an event signaling the end of the search will never be emitted. How-
ever, property (1) still ensure that all erroneous states will eventually
be discovered after a finite time.

In Depth, in Breath or Anything in Between. The lazy algorithm
described in the previous paragraph does not specify in which order
the state space is traversed. However, the choice of the traversal
order plays a critical role for the exhaustiveness of the search. For
example, a depth-first strategy is not guaranteed to cover the whole
state state space if it is infinite. On the contrary, a breadth-first tra-
versal will always visit all reachable states but will not be efficient
at finding deep bugs. To make it possible to change the traversal
strategy or to use search heuristics, the algorithm is parametrized
by a work-list data-structure responsible of selecting which state
to explore next at any point in the algorithm. We propose a for-
mal notion of fairness to characterize work-lists that ensure the
exhaustiveness of the search.

4 RESULTS & CONTRIBUTIONS

4.1 Coq Formalization
Formalizing the Lazy Algorithm. We implemented the lazy search

algorithm of section 3.3 in Coq and formally proved its correctness.
The search algorithm operates on an arbitrary type G of graphs
with vertices of type V. The only requirement is that type G must
be equipped with a function succ : G → V → list V computing
the successors of any vertex in a graph. Lazy streams of events are
implemented using a coinductive datatype defined as follows

Inductive event := FIND(𝑣 : V) | WAIT | DONE.
CoInductive stream := scons (𝑒 : event) (𝑠 : stream)

The algorithm itself is implemented as a corecursive function
search : G → list V → (V → bool) → stream. Given a graph
𝑔, a list of vertex 𝑙 and a boolean predicate 𝑃 , search 𝑔 𝑙 𝑃 search
for vertices reachable from 𝑙 in 𝑔 and satisfying the predicate 𝑃 .
The output of the search function is a stream of events. There are
three kind of events: FIND(𝑣) signals that vertex 𝑣 is a reachable
vertex satisfying 𝑃 , DONE marks the end of the search, and WAIT
signals that the search procedure is temporary idling. This extra
WAIT event is needed because corecursive stream algorithms are
required to produce a new value at every iteration []. When a vertex

not satisfying 𝑃 is encountered during the search, a WAIT event is
emitted to fulfill this requirement.

Correctness of the Search Algorithm. We proved in Coq that the
search algorithm satisfies the correctness conditions (1) and (2)
presented in section 3.3. These two conditions can be formalized as
follows:
(1) ∃𝑖, (search 𝑔 𝑙 𝑃) [𝑖] = FIND(𝑣) ⇔ 𝑣 ∈ Reach𝑙 (𝑔) ∧ 𝑃 𝑣 = true
(2) (search 𝑔 𝑙 𝑃) [𝑖] = DONE ⇒ ∀𝑗 > 𝑖, (search 𝑔 𝑙 𝑃) [𝑗] = DONE

As discussed in section 3.3, the exhaustiveness of the search (the
right-to-left implication of condition (1)) depends on the order in
which vertices are traversed. In our Coq implementation, the search
function depends on a work-list data-structure that keep tracks of
vertex waiting to be visited and select the next vertex to visit at
every iteration of the algorithm. A work-list implementation is said
to be fair if any vertex inserted in the work-list is guaranteed to
eventually be visited. We proved in Coq that this fairness criterion
is enough to ensure the exhaustiveness of the search. We proved in
Coq that queues are fair work-lists realizing a breadth-first traver-
sal. Additionally, we developed a work-list data-structure based on
bounded stacks to perform traversals by iterative-deepening. We
also proved that this new data-structure is fair. This principle could
be applied to other data-structures like prioritized queues.

4.2 Applications to Bug Finding by Symbolic Execution
We applied our verified search algorithm to the formal verification of
an automated bug finder by symbolic execution [10, 13]. We target a
small imperative programming language with while-loops, integer
arithmetic and assertions.

Correctness. In application of the correctness of the search algo-
rithm, we prove that our bug finder enjoys the following properties:

(1) It detects only true bugs
(2) It enumerates all bugs
Symbolic execution generates infinite state spaceswhen programs

contains unbounded loops. However, on loop free programs, the
correctness of our search algorithm ensure that the bug finder will
either find a bug or terminates without any alarm, thus proving the
the analyzed program free of bugs.

4.3 Applications to Predicate Abstraction
As another example, we applied our search algorithm to the verifica-
tion of a model checker by predicate abstraction [5, 6]. We target the
same imperative language as the bug finder by symbolic execution.

Correctness. In application of the correctness of the search al-
gorithm, we prove that our predicate abstraction model checker
find all bugs. However, due to the over-approximating nature of
predicate abstraction, it might report false alarms.
By design, predicate abstraction generates finitely many states.

Consequently, our predicate abstraction model checker always ter-
minates. However, we do not formally prove it.

5 CONCLUSION & FUTURE WORK
In this work, we proposed a general approach to the formal verifi-
cation of software model checkers in the Coq proof assistant. Our

ICFP: G: Formal Verification of a Lazy Software Model Checker • 3

approach builds on a lazy search algorithm to exhaustively explore
the state space of programs. This search algorithm is completely
independent from any programming language and can be shared
by multiple model checkers using different methods to generate
the state space. In particular we showed that it can be applied to
model checking methods generating infinite and finite state spaces.
In both cases, we manage to offer strong guarantees on the exhaus-
tiveness of the search. So far, we successfully applied this approach
to the formal verification of model checkers for a small imperative
programming language. A next step would be to investigate more
sophisticated language with pointers and functions.

REFERENCES
[1] Agda. https://wiki.portal.chalmers.se/agda/pmwiki.php.
[2] The coq proof assistant. https://coq.inria.fr.
[3] Isabelle. https://isabelle.in.tum.de.
[4] Andrew W. Appel. Verified software toolchain. In Gilles Barthe, editor, Pro-

gramming Languages and Systems, pages 1–17, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008.

[6] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian
abstraction for model checking c programs. International Journal on Software
Tools for Technology Transfer, 5(1):49–58, 2003.

[7] Klaus Dräger, Andrey Kupriyanov, Bernd Finkbeiner, and Heike Wehrheim. Slab:
A certifying model checker for infinite-state concurrent systems. In Javier Esparza
and Rupak Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, pages 271–274, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[8] Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander
Schimpf, and Jan-Georg Smaus. A fully verified executable ltl model checker.
In N. Sharygina and H. Veith, editors, Computer Aided Verification (CAV 2013),
volume 8044, pages 463–478, 2013.

[9] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated ran-
dom testing. In Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213–223, 2005.

[10] Patrice Godefroid, Michael Y. Levin, and David Molnar. Automated whitebox
fuzz testing. November 2008.

[11] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’02, page 58–70, New York, NY, USA,
2002. Association for Computing Machinery.

[12] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David
Pichardie. A formally-verified C static analyzer. In POPL 2015: 42nd symposium
Principles of Programming Languages, pages 247–259. ACM Press, 2015.

[13] James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, jul 1976.

[14] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, jul 2009.

[15] Xavier Leroy. Verified squared: does critical software deserve verified tools? In
38th symposium Principles of Programming Languages, pages 1–2. ACM Press,
2011. Abstract of invited lecture.

[16] Alain Mebsout. Inférence d’invariants pour le model checking de systèmes
paramétrés. Theses, Université Paris Sud - Paris XI, September 2014.

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr
https://isabelle.in.tum.de

	1 Problem & Motivation
	2 Background & Related Work
	3 Approach & Uniqueness
	3.1 It Is All About Searching for Bugs
	3.2 One Search Algorithm to Rule Them All?
	3.3 Our Solution

	4 Results & Contributions
	4.1 Coq Formalization
	4.2 Applications to Bug Finding by Symbolic Execution
	4.3 Applications to Predicate Abstraction

	5 Conclusion & Future Work
	References

