ICSE: G: Test Scenario Generation for Autonomous Driving Systems with Reinforcement Learning

Chengjie Lu
Simula Research Laboratory and University of Oslo
Oslo, Norway
chengjielu@simula.no

Abstract—We have seen rapid development of autonomous driving systems (ADSs) in recent years. These systems place high requirements on safety and reliability for their mass adoption, and ADS testing is one crucial approach to ensure their success. However, it is impossible to test all the scenarios due to the inherent complexity and uncertainty of ADSs and their driving tasks. Besides, the operating environment of ADSs is dynamic, continuously evolving, and full of uncertainties, which requires a testing approach adaptive to the environment. Reinforcement learning (RL) has shown great potential in various complex tasks requiring constant adaptation to dynamic environments. To this end, this paper presents RLTester, a novel ADS testing approach, that adopts reinforcement learning (RL) to learn critical environment configurations (i.e., test scenarios) of the operating environment of ADSs that could reveal their unsafe behaviors. To generate diverse and critical test scenarios, we defined 142 environment configuration actions and adopted the Time-To-Collision metric to construct the reward function. Our evaluation shows that RLTester discovered a total of 256 collisions, of which 192 are unique, and took an average of 11.59 seconds for each collision. Further, RLTester is effective in generating more diverse test scenarios compared to a state-of-the-art approach, DeepCollision. We also introduce an open-source driving scenario dataset, DeepScenario, which consists of over 30K driving scenarios.

Index Terms—Autonomous Driving System Testing, Critical Scenario, Reinforcement Learning, Scenario Dataset

I. PROBLEM AND MOTIVATION

Problem. In recent years, we have seen rapid development of autonomous driving systems (ADSs), which are cyber-physical systems capable of sensing the environment and making decisions autonomously [3]. However, due to the complexity of ADSs themselves and the complexity of their operating environments, the number of possible scenarios for testing ADSs is infinite. Further, their operating environments are dynamic, continuously evolving, and full of various uncertainties, (e.g., unexpected pedestrian behaviors) and ADSs must operate safely in such operating environments. Therefore, it’s important to test ADSs to ensure their dependability under various driving/test scenarios [4]. Thus, it’s important to have a test approach that can adapt to the changes in the operating environment and generate critical environment configurations, under which an autonomous vehicle must be tested in terms of its ability to operate safely.

Online testing is an important ADS testing method aiming at identifying system-level failures by generating critical test scenarios, in which an ADS is embedded in an operating environment (which is often a simulated virtual environment) and tested when it interacts with the environment. Several online testing approaches [5], [6], [7], [8] have been proposed by applying various techniques such as search-based testing (SBT) and reinforcement learning (RL). For example, SBT has been widely used to generate test scenarios by formulating a test generation problem as an optimization problem, which can be addressed with meta-heuristic optimization algorithms (e.g., genetic algorithms [9]). SBT approaches [10], [11], [12] have shown promising performance in identifying system-level failures, however, it remains challenging to generate critical scenarios cost-effectively due to the huge computational and time overhead caused by evaluating test scenarios. Additionally, existing SBT approaches show limited effectiveness when testing a long-term decision-making task under a dynamic and continuously changing environment [13].

Motivation. Recently, RL has demonstrated great potential in various challenging problems requiring adaption to a continuously changing environment [13]. Several RL-based approaches [7], [8], [14] have been proposed and have shown promising results for testing ADSs. However, covering as many test scenarios as possible is challenging, with one of the reasons being insufficient coverage of the configurable environment parameters. For example, Chen et al. [8] targeted lane-change scenarios and controlled three types of adversarial vehicles with only longitudinal movements. DeepCollision [7] aims at four driving tasks and adopts 52 environment configuration actions. To generate critical scenarios, DeepCollision employs collision probability to design the reward function.

This paper presents RLTester, an RL-based online testing approach, which extended DeepCollision in terms of the ability to cover more diverse and critical test scenarios. The main contributions are: 1) We expanded the number of environment configurable parameters and defined 142 actions for configuring the environment; 2) We proposed a novel reward function design based on a commonly used safety indicator (i.e., Time-To-Collision [15]). The results show that RLTester outperformed DeepCollision in terms of generating more diverse and critical scenarios.

This SRC Grand Final submission summarizes some key findings of the paper [1], which has been submitted to ACM Transactions on Software Engineering and Methodology (TOSEM) and is currently undergoing major revision. The dataset, i.e., DeepScenario [2], has been accepted and published in the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
II. BACKGROUND AND RELATED WORK

A. Reinforcement Learning

Reinforcement learning is about agents learning optimal behaviors to achieve goals through iterative interactions with unknown environments [13]. Specifically, at each learning step, an RL agent observes the environment state and decides an action to take based on its current behavioral policy, which is the mapping between states to actions. After taking the action, the performance of the agent is evaluated with a reward, based on which the behavioral policy will be updated. The goal is to maximize the cumulative reward of a long-term decision-making process. Deep Q-Learning (DQN) [16] is a classical RL algorithm that has demonstrated good performance in solving complicated problems. The behavioral policy in DQN is constructed as a deep neural network (DNN, also known as Q-Network) that takes states as inputs and selects optimal actions based on the network’s predictions. The application of DNN has made DQN successful in autonomous driving [17].

B. Online ADS Testing

Online testing approaches have been proposed to test ADSs in a simulated/physical operating environment. Various techniques have been applied in these approaches, including SBT and RL. SBT typically focuses on the test scenario generation with the guidance of optimization objectives such as violating safety requirements [11], minimizing time to collision [10], and maximizing the speed at collision [5]. For example, Abdessalem et al. [5] proposed NSGAII-DT, which considers two objectives (i.e., speed at the time of collision, and distance to obstacles) to generate critical scenarios for vision-based control systems by combining NSGA-II with decision tree classification models. SBT approaches have shown promising performance in identifying system-level failures, however, these approaches remain challenging and show limited effectiveness when testing a long-term decision-making task under a dynamic environment [13]. RL-based techniques identify critical scenarios by adaptively exploring the vast scenario space. DeepCollision [7] is an RL-based approach that generates safety-critical scenarios by dynamically configuring an AV’s operating environment. By combining RL and multi-objective search, Haq et al. [18] proposed a multi-objective RL approach, MORLOT, for testing AV. MORLOT uses RL to adaptively generate critical scenarios that can cause requirement violations and adopts multi-objective search to cover as many requirements as possible. However, covering as many test scenarios as possible is challenging, with one of the reasons being insufficient coverage of the configurable environment parameters. Therefore, in this paper, we propose an RL-based online ADS testing approach, which aims to cover more diverse and critical test scenarios.

III. RLTester METHODOLOGY

RLTester generates critical test scenarios through automatically learning and dynamically configuring the operating environment of an autonomous vehicle under test (i.e., AVUT) with RL. As illustrated in Fig. 1, RLTester consists of three main components: Test Environment where an AVUT operates in its Operating Environment; a list of REST APIs for configuring the environment and obtaining its states; and DQN Agent that generates actions to configure Operating Environment. DQN Agent first observes a state s and decides an action a based on s. Such an action a is implemented as an REST API, which introduces new configurations to the environment through an HTTP Request. After a’s execution, both AVUT and its Operating Environment enter a new state s', which is returned to DQN Agent via an HTTP Response. The agent’s performance on taking action a is evaluated with a reward r. Below is a detailed description of each component.

A. Test Environment

RLTester generates critical test scenarios in a simulated Test Environment. To build it, RLTester employs SVL Simulator 2021.1 [19] to simulate the AVUT and its Operating Environment and deploys the ADS Apollo 5.0 [20] on the AVUT to enable driving. Specifically, we selected the San Francisco HD map based on the South of Market (SoMa) district in San Francisco. As for the AVUT, we employed Lincoln2017MKZ, a four-door Sedan commonly applied for autonomous driving research [21], [22].

B. Environment Configuration REST API

When testing ADS in a simulated environment, we assume that the more environmental parameters to be manipulated imply more diverse scenarios that can be generated. Hence, we expanded DeepCollision and obtained three types of parameters, for Static Objects, Dynamic Objects, and Weather&Time. For example, we add an additional parameter (i.e., color) for NPC Vehicle since evidence has shown the influence of obstacle color on the decision-making of the AVUT [23]. Invocations of these parameters have been implemented as 142 REST APIs so that we can configure the Operating Environment and obtain the status of the Test Environment through HTTP requests and responses.

C. DQN Agent

To learn environment configurations with RL, RLTester adopts the following state encoding, action space, and reward function definitions such that DQN can be applied. Regarding
state encoding, we adopt multi-modal sensor fusion [24] as the encoding strategy, which encodes a state using camera images, Lidar’s eye view representation, and AVUT’s state measurements (i.e., speed). After a state is observed, it is fed into the Q-Network for feature extraction, based on the results, the DQN Agent will decide an action to configure the environment. We designed the Q-Network as a multi-modal sensor fusion network considering its promising performance in various autonomous driving perception tasks [25]. Specifically, the Q-Network consists of an image-processing CNN module, a lidar-processing CNN module, and a fully connected AVUT state measurement-processing module. The action space is composed of environment configuration REST APIs, and after the invocation of action, we will get a set of outputs, based on which we define the reward function for RLTester. Specifically, we adopt Time-To-Collision (TTC) as the output, which is a commonly used safety indicator for measuring the severity of traffic conflicts [15]. The smaller a TTC value, the higher the severity of the traffic conflict. Recall that RLTester aims to generate critical scenarios that can lead to more safety violations. Thus, we define a reward function R_{TTC}, which encourages the DQN Agent to take an environment configuration action that can minimize TTC so that the traffic conflicts can be maximized.

IV. Evaluation

To study the effectiveness of RLTester in terms of generating critical scenarios, we first compared RLTester with two baselines adopted in DeepCollision, i.e., Random Strategy (RS), which randomly selects actions to configure the environment, and Greedy Strategy (GS), which greedily selects an action that can achieve the best performance in terms of TTC. We then compared RLTester with DeepCollision in terms of covering more configurable environment parameters and generating more diverse and critical scenarios. The experiments were executed on four roads (R1...R4) selected based on different road structures and characteristics, and all experiments were repeated 20 times.

Comparison with RS and GS regarding the number of discovered collisions (#C) and the time cost for discovering a collision (T_C). The results show that, for #C, RLTester discovered a total of 256 collisions, which outperformed RS (i.e., 41) and GS (i.e., 73). As for T_C, the results show that RLTester took an average of 11.59 seconds to discover a collision, outperforming RS (16.86 seconds) and GS (19.05 seconds). In addition, we also performed statistical tests to compare the results of 20 executions. Specifically, we used the Mann and Whitney test for assessing statistical significance and calculated Vargha and Delaney metric A_{12} for the effect size. The statistical results show that RLTester significantly outperformed RS and GS in terms of #C and T_C, indicating that RLTester is effective in generating more critical test scenarios within less time.

Comparison with DeepCollision with two diversity metrics: $DIV_{API} = \frac{|U_{API}|}{T_{API}}, DIV_{SC} = \frac{|U_{SC}|}{T_{SC}}$, where, $|U_{API}$ and $|U_{SC}$ are the number of unique API calls and unique test scenarios; T_{API} and T_{SC} are the total number of API calls and test scenarios. As shown in Fig. 2, RLTester outperformed $DeepCollision$ regarding DIV_{API} and DIV_{SC} for all the roads. In terms of #C and T_C, RLTester outperformed $DeepCollision$ as it discovered 192 unique collisions with an average T_C of 12 seconds. Instead, DeepCollision discovered a total of 288 collisions (with only 40 are unique) taking an average T_C of 18.44 seconds. The differences with DeepCollision are all statistically significant, indicating that RLTester effectively covers more diverse environment parameters and generates more diverse test scenarios. After replaying the scenarios, we found that DeepCollision’s lower effectiveness in diversity is due to calling the same few APIs repeatedly. For example, most collisions occur when pedestrians cross the road.

V. Scenario Dataset

We created an open-source driving scenario dataset, DeepScenario [2], by collecting the test scenarios generated by RLTester. DeepScenario contains more than 30K executable driving scenarios that can be utilized for various autonomous driving research, such as system-level ADS testing, test selection and optimization, and regression tests. We proposed a parameter-based scenario definition language. In addition, we developed a scenario toolset to facilitate the collection, replay, and usage of scenarios. We discuss the scenario definition, toolset, and dataset usage as follows:

A. Scenario Definition

According to Ulbrich et al. [26], a driving scenario S describes the temporal development between several scenes. A scene describes a snapshot of the environment. In DeepScenario, a driving scenario S is defined as a tuple with several scenes: $S = <scene_1, scene_2, ..., scene_n, T>$, where T is the time that S spans and n denotes the number of scenes in S. We further define a scene sc as a 3-tuple: $sc = <ego story, obstacle story, environment state>$, where 1) ego story denotes the operations and kinetic parameters of the AVUT; 2) obstacle story denotes the operations and kinetic parameters of the static and dynamic obstacles such as NPC vehicles and pedestrians; 3) environment state includes weather conditions, time of day, and the driving tasks. Additionally, we developed a Domain Specific Language (DSL) for scenario representation based on the scenario definition. The scenario file extension is .deepsenario, an XML-based file extension.
B. Scenario Toolset

We developed ScenarioCollector to automatically collect driving scenarios. ScenarioCollector has already been integrated into the environment configuration framework and can collect and store the driving scenarios in scenario file format. ScenarioRunner was developed to support replaying driving scenarios by taking scenario files as inputs. Specifically, it has two ways of replaying a driving scenario. First, it can exactly replay the behaviors of the ego vehicle and obstacles by reading their kinetic parameters. By selecting and replaying driving scenarios in this way, ScenarioRunner can facilitate further analysis and diagnoses. Furthermore, ScenarioRunner can integrate different ADSs. By reading their kinetic parameters. By selecting and replaying driving scenarios in this way, ScenarioRunner can facilitate further analysis and diagnoses. Furthermore, ScenarioRunner can integrate different ADSs. In this way, the behaviors of the ego vehicle are not replayed by ScenarioRunner but controlled by the ADS, and the behaviors of obstacles can still be accurately replayed. This way enables testing various ADSs by integrating ADSs in the replayed driving conditions.

C. Driving Scenario Attributes

To characterize driving scenarios in the dataset, we associate each scenario with six attributes, which are calculated based on the test results of driving scenarios. Specifically, for a scenario S, its attributes can be classified into two types defined as follows: Performance Attributes are related to the safety/comfort measures, and Time-To-Collision (TTC), Distance-to-Obstacles (DTO), and Jerk are the three reward attributes, which measure the extent of safety/comfort when driving in S. Specifically, smaller TTC/DTO values indicate higher safety risk, while larger Jerk values indicate less comfort. Collision Attributes are collision-related attributes. We have defined three collision attributes: Collision (COL) is a Boolean attribute indicating if the ego vehicle collided with obstacles in S. Collision-Type (COLT) is an enumerated attribute that shows the type of obstacle the ego vehicle collided with. Concretely, COLT has three possible values, which are Non-player character (NPC) Vehicle, Pedestrian, and Static Obstacle. Speed-At-Collision (SAC) is an attribute that records the speed at which the ego vehicle in S collided (if it happened) with the obstacle.

D. Dataset Usage

Testing ADSs to detect system-level failures. By running scenarios with ScenarioRunner, we can deploy an ADS in the environment and perform testing to identify system-level failures of the ADS. Moreover, various ADSs or various ADS versions can be integrated with ScenarioRunner, which can be tested by executing scenarios.

Analyzing scenarios for further diagnoses. With the driving scenarios attributes, we can easily select critical scenarios from the dataset that caused higher safety/comfort risk or collisions of the ego vehicle. The selected scenarios can be replayed with ScenarioRunner to facilitate further analysis and diagnoses of ADSs. For example, we can analyze collision scenarios concerning collision type and identify key environmental factors for different types of collisions.

Selecting and prioritizing scenarios for regression testing. In practice, generating critical testing scenarios is very expensive in terms of time costs and computational resources, and as ADS evolves, regression testing for multiple versions will become even more expensive [27]. By using search-based selection techniques, we can further select critical scenarios from DeepScenario and prioritize them to support regression testing of ADSs.

The dataset is available on our GitHub online repository\footnote{https://github.com/Simula-COMPLEX/DeepScenario} and Zenodo [28].

VI. DISCUSSION AND LESSON LEARNED

A. Incorporating Multi-objective RL

Currently, RTester uses one objective to design the reward function. In practice, many requirements, such as safety and functional requirements, need to be tested simultaneously. This motivates us to explore different designs of RTester to support multi-objective driving scenario generation. One solution is to merge multiple objectives into a single objective with a weighted sum and use it to design a reward function. Another solution is to employ multi-objective reinforcement learning (MORL) [29], which aims to find a policy that can optimize multiple objectives simultaneously: thereby doesn’t require merging multiple objectives into a single objective. We will investigate the multi-objective RTester in the future.

B. Handling Infinite Scenario Space

We designed 142 REST APIs by considering various environmental parameters and their possible values. However, a test scenario is characterized by many parameters, and the possible combinations of these parameters are theoretically infinite. Therefore, it’s important to cost-effectively explore the huge scenario space and pay more attention to those environmental parameters that have more importance in the critical scenario generation. To this end, in our recent work, we proposed a novel testing approach, EpiTESTER [30], focusing on finding critical scenarios efficiently. In particular, EpiTESTER uses an epigenetic algorithm [31] that can selectively express or silence certain environmental parameters, thereby enabling the search to focus on the most important parameters and reduce the search space. To decide the expression of parameters, we employed the attention mechanism [32] that can adaptively determine the parameter’s contribution to critical scenarios. In the future, we will investigate integrating EpiTESTER with RTester, such as designing the Q-Network with the attention mechanism.

VII. CONCLUDING REMARKS

We present RTester, an RL-based ADS testing approach that generates more unique and critical scenarios in less time. Moreover, we present an open-source driving scenario dataset, DeepScenario. Future works include a systematic definition of environmental parameter coverage and scenario coverage criteria, using multi-objective reinforcement learning, and integrating EpiTESTER into the overall approach.
REFERENCES

