
SIGMOD: G: Capturing Data-inherent Dependencies
in JSON Schema Extraction

Stefan Klessinger
stefan.klessinger@uni-passau.de

University of Passau
Passau, Germany

1 PROBLEM AND MOTIVATION
JSON is a popular semi-structured data exchange format widely
used across various technological domains. It describes data as key-
value pairs, often referred to as properties. JSON is essential in web
applications for data transmission and in document stores such as
MongoDB or Couchbase. Even relational database management
systems such as PostgreSQL and MySQL support JSON data types.
A sample JSON instance from log data generated in the gameWorld
of Warcraft [4] is shown in Fig. 1a. It describes two kinds of events,
discriminated by the value of property type: depending on the value
of type, either properties resourceChange and resourceChangeType
or property overheal are present. Although JSON instances are self-
describing, they may be accompanied by an explicitly declared
schema, commonly encoded in the JSON Schema language.

JSON Schema [1] allows to describe and constrain JSON data. It
is the de-facto standard for schema description in JSON and adopted
across many different use cases. Schemastore.org [2] lists over 800
curated and publicly available schemas, providing specifications
ranging from configuration files, workflows, and pipelines, to com-
ponents of content management systems, and video games. JSON
Schema is supported by a wide range of tools and libraries in many
different programming languages. It allows data analysts to define
and enforce constraints on the data, which aids in identifying and
correcting errors in JSON data sets. The conformity of a JSON in-
stance to a JSON Schema can be analyzed with a wide range of
validation tools. This improves the reliability and quality of data.
Furthermore, the schema provides a documentation of the data
structure to data consumers.

Consider, again, our example of log data fromWorld of Warcraft.
A JSON Schema description of the data is given in Fig. 1b. This
schema enforces that a document conforms to exactly one (indicated
by oneOf) of two subschemas: (1) a string type and two numbers
ResourceChange and ResourceChangeType with no additional prop-
erties or (2) a string type and an optional number overheal with no
additional properties. This constitutes a union type description of
the JSON instances in Fig. 1a.

In practice, JSON instances often come without a schema. Conse-
quently, automatic extraction of schemas from collections of JSON
instances is an actively researched field, with practical applications
in data management (e.g., describing data lakes) and in software en-
gineering (e.g., designing robust web APIs) but also in fields outside
of computer science, where a precise description of data structures
and constraints on them are valuable.

Virtually all existing approaches (e.g., [6, 17, 20, 25, 26]) focus
on capturing the structure of JSON instances and largely ignore
atomic property values, apart from deriving basic types (e.g., strings,
integers) or computing statistics such as minimum and maximum

1 {" type ": " resourcechange ",
2 " resourceChange ": 30,
3 " resourceChangeType ": 17} ,

1 {" type ": "heal",
2 " overheal ": 2548}

(a) Two JSON instances.

1 {" oneOf ": [
2 {" type ": " object ",
3 " properties ": {
4 "type ": {"type": "string"},
5 " resourceChange ": {" type ": " number "},
6 " resourceChangeType ": {" type ": " number "}} ,
7 " required ": [" type", " resourceChange ",
8 " resourceChangeType "],
9 " additionalProperties ": false },
10 {" type ": " object ",
11 " properties ": {
12 "type ": {"type": "string"},
13 " overheal ": {" type ": " number "}} ,
14 " required ": [" type "],
15 " additionalProperties ": false }]}

(b) JSON Schema definition for lines 2-9 in (a), using a union type.

1 {" oneOf ": [
2 {" type ": " object ",
3 " properties ": {
4 "type ": {"const": "resourcechange"},
5 " resourceChange ": {" type ": " number "},
6 " resourceChangeType ": {" type ": " number "}} ,
7 " required ": [" type", " resourceChange ",
8 " resourceChangeType "],
9 " additionalProperties ": false },
10 {" type ": " object ",
11 " properties ": {
12 "type ": {"const": "heal"},
13 " overheal ": {" type ": " number "}} ,
14 " required ": [" type "]}] ,
15 " additionalProperties ": false }

(c) JSON Schema definition for lines 2-9 in (a), using a tagged union.

Figure 1: World of Warcraft log data (edited for conciseness).

values. In particular, they ignore dependencies between property
values and subschemas of sibling properties. However, an empirical
analysis over a large corpus of real-world JSON Schema declara-
tions revealed that hand-crafted schemas do contain conditional
dependencies, where the value of one property has implications for
its sibling properties [7].

Once again, consider our example in Fig. 1. State-of-the-art ap-
proaches for JSON Schema extraction create a schema similar to
Fig. 1b. However, current approaches are not designed to detect

Stefan Klessinger

that the occurrence of these properties depends on the value of
property type. A sample encoding of this dependency is shown
in Fig. 1c. Although this schema looks very similar to the schema
discussed in Fig. 1b, it offers a fundamentally different and much
more precise description of the data: instead of specifying the oc-
currence of properties ResourceChange and ResourceChangeType (or
overheal) for any string type, it describes a tagged union, enforc-
ing that these properties may only occur when type has the value
“resourcechange” (or “heal”).

We target the challenge of discovering tagged unions in JSON
data and provide the first well-principled approach to detect the
conditional existence of (at least) one property based on the values
of another property (which we call tag). Our approach is theo-
retically based on extended Conditional Functional Dependencies
(eCFDs) [10], and is accompanied by a working implementation
and an evaluation.

2 BACKGROUND AND RELATEDWORK
JSON data model. We adopt the grammar from [5] to describe

the syntax of JSON values, specifically basic values, objects, and
arrays. Basic values 𝐵 consist of strings 𝑠 , numbers 𝑛, Booleans,
and the null value. Objects 𝑂 represent sets of key-value pairs, and
arrays 𝐴 represent sequences of values.

𝐽 ::= 𝐵 | 𝑂 | 𝐴
𝐵 ::= null | true | false | 𝑛 | 𝑠 𝑛 ∈ Num, 𝑠 ∈ Str
𝑂 ::= {𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛 } 𝑛 ≥ 0, 𝑖 ≠ 𝑗 ⇒ 𝑙𝑖 ≠ 𝑙 𝑗

𝐴 ::= [𝐽1, . . . , 𝐽𝑛] 𝑛 ≥ 0

JSON Schema. JSON Schema is the de-facto standard for defining
the structure of JSON data. The JSON Schema language uses JSON
syntax. For a formal introduction of the JSON Schema language,
we refer to Bourhis et al. [9] and Pezoa et al. [23].

JSON schema extraction. Recent surveys [11, 27] offer an overview
of JSON schema extraction. Several of the approaches examined
support the extraction of union types [6, 17, 20, 25] but they do not
support tagged unions. Notably, Baazizi et al. [6] outline how their
approach — based on typing — could be extended to recognize such
patterns. We pursue a different approach, relying on the discovery
of dependencies, which we capture as constraints in JSON Schema.

Spoth et al. [26] use a clustering-based approach to reduce ambi-
guities in schema extraction, for instance, collections being encoded
as objects instead of arrays. Mior [22] presents a monoid-based ap-
proach to schema extraction, offering a configurable set of features,
including additional data statistics or the discovery of enums (i.e.,
defining properties that only assume a small number of different
values through their values instead of their data type). Durner et
al. [13] propose an approach for fast JSON data analysis that di-
vides the data into tiles and extracts local schemas. However, tagged
unions are considered in neither of these approaches.

Conditional functional dependencies. Our previous work on JSON
schema extraction [18] detects tagged unions, where the type of a
property depends on the value of another property, the so-called
tag. This earlier approach relies on the detection of Conditional
Functional Dependencies (CFDs) [8], CFDs were first introduced for
relational data, in the context of data cleaning. Several approaches
for CFD mining have been proposed [15, 16, 21, 24].

JSON
Schema

JSONJSONJSON

Schema Extraction with
Third-Party Approach1

4

2 3

JSON
Schema

{allOf:[S,T]}

Json Schema S

JSON Schema
Constraints T

[T1=v1]→[P1]
[T1=v2]→[P2]
[T2=v3]→[P3]
[T2=v4]→[P4]

[T1=v1]→[P1]
[T1=v2]→[P2]
[T2=v3]→[P3]
[T2=v4]→[P4]

Heuristic
Filtering

Dependency
Discovery

Figure 2: Conceptual Architecture Overview

Bravo et al. [10] propose extended Conditional Functional Depen-
dencies (eCFDs). eCFDs extend CFDs, since they support negation
and disjunction, yet satisfiability remains decidable. In the approach
presented here, we employ eCFDs to capture dependencies in the
data, allowing us to also support optional properties. We discuss
eCFDs in more detail in Section 3.

Schema and constraint definition. XML is widely regarded as
the precursor to JSON. It is a semi-structured data format with
implicit structural information and an optional explicit schema.
Schema languages for XML, such as XML Schema [28], support the
definition of constraints. In version 1.1 of XML Schema, assertions
allow to encode constructs such as tagged unions. Yet, to the best
of our knowledge, there is no work on the automatic detection of
tagged unions in XML data.

Metrics for Schema Quality. Evaluating the quality of extracted
Schemas faces the challenge that there is usually no ground-truth
schema available. In the existing literature on JSON Schema extrac-
tion, there is no agreed-upon metric for the evaluation of JSON
Schemas. Baazizi et al. [6] report the type size of extracted schemas
as a measure of succinctness. Spoth et al. [26] allocate a randomly
selected subset of JSON data for validation, while the remainder is
utilized for schema extraction. They then assess the recall of the
extracted schema by determining the fraction of the validation set
that conforms to the extracted schema. This gives a notion of how
well the schema generalizes to unseen data, a desirable property
in an environment where additional data is encountered regularly.
Further, they introduced schema entropy as a metric to approximate
the precision of a (JSON) schema. It measures the number of pos-
sible combinations of properties (and their types) that a schema
permits. We discuss schema entropy in more detail in Section 4.

3 UNIQUENESS AND APPROACH
Existing approaches for JSON Schema extraction largely focus on
the structure of the data. Although they are able to detect the
co-occurrence of certain properties, they are unable to recognize
whether the co-occurrence depends on the values of a certain prop-
erty. We present the first approach that, by considering dependen-
cies in JSON data, is able to detect whether certain value-based
conditions for co-occurrence apply. Our goal is to produce schemas
that precisely capture these constraints and that are also compre-
hensible for humans.

Capturing Data-inherent Dependencies in JSON Schema Extraction

ID TAG_VALUE PROPERTY_NAME
1 resourcechange resourceChange
1 resourcechange resourceChangeType
7 heal overheal

(a) Relational encoding of World of Warcraft data in Fig. 1a.
𝜓1 = (𝑅1 : [TAG_VALUE] → ∅, PROPERTY_NAME,𝑇1) , where the pattern
tableau𝑇1 is

TAG_VALUE PROPERTY_NAME ∅
{resourcechange} {resourceChange, resourceChangeType}

{heal} {overheal}

(b) eCFD encoding the constraints in Figure 1.

Figure 3: (a) A relational encoding of the JSON data in Fig. 1a
and (b) an eCFD encoding the dependency between the value
of tag condition and the existence of sibling properties.

Architecture. A conceptual overview of our system is shown in
Fig. 2. Starting from a set of JSON documents on the bottom left,
we (1) extract a JSON Schema S using any third-party approach. In
the same JSON documents, we (2) perform eCFD discovery, using
the relational encoding we described. This yields a (potentially
large) list of candidates that hold on the data. Next, we (3) apply our
configurable heuristics1, yielding a reduced list of eCFDs that will
be encoded in the schema. Finally, we (4) translate the constraints
imposed by the eCFDs into JSON Schema T and create a conjunctive
schema with the JSON Schema S. The resulting schema {"allOf":
[S, T]} enforces that an instance must conform to both schemas.

Relational Encoding. Our approach relies on a relational encoding
of JSON data. Specifically, we use triples of the form:

(𝐼𝐷,𝑇𝐴𝐺_𝑉𝐴𝐿𝑈𝐸, 𝑃𝑅𝑂𝑃𝐸𝑅𝑇_𝑁𝐴𝑀𝐸)
𝐼𝐷 uniquely identifies every instance of tags, 𝑇𝐴𝐺_𝑉𝐴𝐿𝑈𝐸 con-
tains the value of the corresponding tag, and 𝑃𝑅𝑂𝑃𝐸𝑅𝑇𝑌_𝑁𝐴𝑀𝐸

contains a property that co-occurs as a sibling of the tag. The rela-
tional encoding contains one triple for each combination of a tag
and a co-occurring property. An exemplary relational encoding of
the data in Fig. 1a is sketched in Fig. 3a.

Dependency Discovery. To capture the existence of properties
based on the value of a tag, we use eCFDs, proposed by Bravo et
al. [10]. Their support for disjunction allows to capture dependen-
cies between a tag value and the existence of an optional property,
e.g., in our log data example, that a “heal” event implies that a
property overheal may occur.

Traditionally, eCFDs and CFDs are employed in relational data
cleaning and repair [14]. We are, to our knowledge, the first to
employ eCFDs and CFDs as a basis for deriving more sophisticated
and informative schemas for semi-structured, hierarchical data.

In introducing eCFDs, we remain on the level of intuition and
refer to the existing work for a formal definition. In Fig. 3b, an eCFD
𝜓1, derived from the JSON data in Fig. 1 is provided. Generally, an
eCFD 𝜓 = (𝑅 : 𝑋 → 𝑌,𝑌𝑝 ,𝑇𝑝) consists of a relational schema 𝑅
and an embedded Functional Dependency 𝑋 → 𝑌 . Here, 𝑋,𝑌,𝑌𝑝
are subsets of attributes in 𝑅, with 𝑌 ∩ 𝑌𝑝 = ∅ and 𝑇𝑝 is a pattern
1This is only a conceptual overview of the architecture. For efficiency, we actually
apply the heuristic filters as early as possible during the discovery process.

tableau. In our example,𝜓1 enforces that if property type has the
value “resourcechange”, then any co-occurring property must have
the name resourceChange or resourceChangeType and if property
type has the value “heal”, then any co-occurring property must
have the name overheal.

Limitations. In real-world schemas, such as those available on
SchemaStore.org [2], we have observed that such dependencies
are usually declared between sibling properties of the same JSON
object. Accordingly, we restrict our detection to tags and properties
reachable by the same path. Note that this is merely a practical
decision and not a technical limitation of our approach. Further, our
approach only captures dependencies that are satisfied by all JSON
instances. Robustness against irregularities, e.g., rare violations of
dependencies due to dirty data,is subject to future work.

Heuristic filtering. Heuristic filtering of dependencies is vital in
detecting dependencies in relational data, to improve performance,
and to avoid overfitting [12]. In our context of JSON schema ex-
traction, it is even more important to discard dependencies with
low support in the data; otherwise, the extracted schema becomes
too verbose for humans to consume. We therefore employ several
heuristics to prune the search space and to remove unfit candidates:

1) We ignore required properties as the right side of an eCFD.
2) Analogously, a property with a single-valued domain can-

not be a tag (i.e., on the left side of an eCFD).
3) Further, we expect properties that serve as tags to have a

relatively small domain size. Our implementation allows to
define a maximum domain size for candidate tags.

4) We argue that empirically, properties with complex data
types (i.e. objects or arrays) usually do not serve as a tag
and only consider tags with primitive values.

5) Properties that rarely occur in the data may coincidentally
(and incorrectly) display the patterns we are looking for. We
implement a configurable threshold that requires properties
to occur with certain support to be considered.

4 RESULTS AND CONTRIBUTIONS
We now present our experiments using real-world JSON dataset of
event logs, New York Times articles, and Twitter data.

Experimental Evaluation. Our experimental evaluation is based
on the metrics used in our preliminary work [18], which has a re-
production package available online [19]. We evaluated the number
of dependencies discovered in different datasets for the varying
configurations of our heuristics. Specifically, we investigate (1) how
changing the threshold for a fixed maximum domain size influences
the number of discovered dependencies and (2) how changing the
maximum domain size for a fixed threshold affects the number
of discovered dependencies. We manually classify the discovered
dependencies as authentic (i.e., dependencies that are intuitive and
do not just hold coincidentally on the data) and non-authentic. This
manual classification is, of course, subjective, and thus a potential
threat to validity. We consider each individual property that de-
pends on a certain tag as a single dependency. Recall, for instance,
the example in Fig. 1c, lines 2-9: the properties resourceChange and
resourceChangeTypemust be present if the type is “resourcechange”;
we consider these as two dependencies.

Stefan Klessinger

0 0.1 1 5 10
0

5

10

15

20

25

Di
sc

ov
er

ed
 D

ep
en

de
nc

ie
s

Warcraftlogs

0 0.1 1 5 10
Threshold (%)

0

5

10

15

20

25

NYT

0 0.1 1 5 10
0

10

20

30

40

50
Twitter

Authentic Non-Authentic

(a) Discovered eCFDs for varying Threshold, unlimited Domain Size

Inf. 50 10 5 3
0

5

10

15

20

25

Di
sc

ov
er

ed
 D

ep
en

de
nc

ie
s

Warcraftlogs

Inf. 50 10 5 3
Domain Size

0

5

10

15

20

25

NYT

Inf. 50 10 5 3
0

10

20

30

40

50
Twitter

Authentic Non-Authentic

(b) Discovered eCFDs for varying Domain Size, no Threshold

Figure 4: Effect of Threshold and Domain Size Heuristics on Disovered eCFDs

Datasets. We investigate three different datasets: (1) The War-
craftlogs dataset contains 6005 JSON instances describing combat
log events obtained through the API of an online service that col-
lects and aggregates player-provided data from the video game
World of Warcraft [4]. (2) The NYT dataset, obtained through the
New York Times archive API [3], consists of 4418 JSON instances
that represent NYT articles from September 2019. (3) The Twitter
dataset, obtained through the Twitter API (before Twitter was re-
named to X), contains the messages and metadata of 19316 tweets,
represented as individual JSON instances.

Evaluation of Threshold Heuristic. We analyze the effect of the
threshold on the number of discovered dependencies, shown in
Fig. 4a. The figure shows the number of discovered authentic and
non-authentic dependencies for different thresholds. A threshold
of 0% indicates that the threshold heuristic is disabled. The domain
size of potential tags is not limited.

In the Warcraftlogs dataset, we discover 24 authentic and 1 non-
authentic dependency with the threshold being disabled. All au-
thentic dependencies describe the existence of sibling properties
based on the value of property type, akin to the example in Fig. 1,
whereas the non-authentic dependency describes the existence of a
property that only occurs twice in the whole dataset and coinciden-
tally appears only for a certain ID value. Increasing the threshold to
0.1% removes the non-authentic dependency, but also 6 authentic
dependencies. Further increasing the threshold worsens the results
by removing an increasing amount of authentic dependencies.

In theNYT dataset, we find 27 dependencies with disabled thresh-
old of which 18 are authentic. The number of discovered dependen-
cies is invariant for the threshold values we investigated. This can
be attributed to the fact that all dependencies, authentic and non-
authentic, enforce the existence of two disjoint sets of properties,
describing either thumbnails or extra large images in more detail.
We consider the conditional existence of these properties based on
the values of properties describing image dimensions (specifically,
properties height and width) as non-authentic dependencies.

The dataset Twitter features 52 dependencies when disabling
the threshold. We classify only 6 of these dependencies as authen-
tic. Increasing the threshold reduces the number of non-authentic

dependencies more drastically than the number of authentic de-
pendencies, but even for a threshold of 10%, the majority of depen-
dencies are non-authentic. The large proportion of non-authentic
dependencies can be attributed to the recursive structure of the
dataset: tweets can reference other tweets, and thus we encounter
the same structure on different nesting-depths (i.e., on different
paths). Our tool identifies properties by their full path and is un-
able to detect recursion, causing our heuristics to fall short if some
dependencies only occur at a certain nesting depth.

Evaluation of Tag Domain Size Heuristic. We now investigate the
effect of the maximum tag domain size on the number of dependen-
cies discovered, shown in Fig. 4b. The figure shows the number of
authentic and non-authentic dependencies discovered for varying
limits on the maximum tag domain size (“Inf.” meaning unlimited)
and with the threshold heuristic disabled. Note that the leftmost bar
for each dataset in Fig. 4b has the same configuration as the leftmost
bars in Fig. 4a . For a more detailed discussion of the datasets, we
refer to the previous paragraphs.

In theWarcraftlogs data, imposing a maximum tag domain size
of 50 removes the non-authentic dependency without removing
any authentic dependency. Further reducing the maximum tag do-
main size to 10 removes all authentic dependencies because they
all depend on the same tag, type, which assumes 23 different val-
ues. However, an appropriate limit on the domain size is a highly
effective filter, leaving only (and all) authentic dependencies.

Likewise, choosing a suitable limit for the maximum type domain
size is very effective on theNYT dataset, removing all non-authentic
dependencies while keeping all authentic ones.

Finally, in the Twitter dataset, our domain size heuristic can
barely reduce the number of non-authentic dependencies. As dis-
cussed above, this can be attributed to the recursive structure of the
data, which our approach is currently unable to handle adequately.

Schema Entropy. Requirements on a (JSON) schema depend on
individual use cases and are highly subjective. Consequently, there
is no agreed-upon metric for JSON Schema quality as of yet. The
existing literature uses different approaches for measuring the qual-
ity of extracted schemas, including Schema Entropy introduced
by Spoth et al. [26]. Schema entropy was introduced as a proxy
measure for the precision of a schema. It measures the number of

Capturing Data-inherent Dependencies in JSON Schema Extraction

possible combinations of properties (and types) a schema permits.
In a basic schema description without conjunction, disjunction, and
negation, the number of property combinations (𝑃) grows exponen-
tially with the amount of optional properties. The schema entropy
value is given as log2 𝑃 .

In the following example, we illustrate that this metric is unable
to capture the higher precision that a schema with tagged unions
offers over a schema using union types.

Example. Consider the JSON Schema snippet in Fig. 1b. The
schema specifies an object with either (1) property type and two
required (i.e., not optional) properties resourceChange and resource-
ChangeType or (2) property type and an optional property overheal.
Alternative (1) allows for exactly one combination of properties
consisting of all properties that are defined in the subschema. Alter-
native (2) allows for two combinations of properties, either just the
property type or both, properties type and overheal must be present.
Thus, the schema entropy value of this schema is log2 3. Now, let
us consider the JSON Schema snippet in Fig. 1c, refining the pre-
vious schema by enforcing a specific value for the property type,
depending on the co-occurring properties. However, the schema
permits the same combinations of properties (and types) and thus,
both schemas have equal schema entropies.

Extending the concept of schema entropy to capture more in-
tricate schema design patterns, such as tagged unions, would be
highly beneficial to the field, allowing one to compare different
schema extraction approaches more in-depth. Yet, designing such a
metric remains an open challenge.

Conclusion. With this work, we advance the field of JSON Schema
extraction by 1) extending our early prototype [18], moving from
CFDs to eCFDs and thereby allowing to detect more complex de-
pendencies; 2) contributing a novel approach based on eCFDs to
capture common patterns in JSON data. Specifically, we target the
schema design pattern where the value of one property implies the
(optional) existence of sibling properties. This is a novel domain
of application for eCFDs, which have traditionally been restricted
to data cleaning and data repair in relational data. We thereby lift
the applicability of CFDs to a more complex data model; 3) devel-
oping effective heuristics to reduce computational complexity and
avoid overfitting; and ultimately, 4) performing an experimental
evaluation of our heuristics based on real-world JSON data.

Although our experimental analysis showed the effectiveness of
our heuristics, it also revealed the necessity to refine our approach
to recursive data structures in the future. In future work, we, more-
over, intend to systematically extend our experimental evaluation,
including a scalability analysis on datasets of different sizes. We
also plan to analyze runtime and the quality of results when em-
ploying sampling techniques. Exploring the use of large language
models to automatically decide whether discovered dependencies
are authentic is another interesting direction for future work.

Acknowledgments. Thisworkwas funded byDeutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) grant #385808805.
I thank Thomas Hütter for the fruitful discussions on schema en-
tropy. I thank Stefanie Scherzinger for her continuous guidance
and support.

REFERENCES
[1] 2024. JSON Schema. Retrieved April 28, 2024 from https://json-schema.org/
[2] 2024. JSON SchemaStore. Retrieved April 28, 2024 from https://www.

schemastore.org/
[3] 2024. New York Times Archive API. Retrieved April 28, 2024 from https:

//developer.nytimes.com/docs/archive-product/1/overview
[4] 2024. Warcraft Logs. Retrieved April 28, 2024 from https://www.warcraftlogs.

com/api/docs
[5] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo

Sartiani, and Stefanie Scherzinger. 2022. Witness Generation for JSON Schema.
CoRR abs/2202.12849 (2022). arXiv:2202.12849 https://arxiv.org/abs/2202.12849

[6] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019.
Parametric schema inference for massive JSON datasets. VLDB J. 28, 4, 497–521.

[7] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2021. An Empirical Study on the "Usage of Not" in Real-
World JSON Schema Documents. In Proc. ER. 102–112.

[8] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. 2007. Conditional Functional Dependencies for Data Cleaning. In Proc.
ICDE. 746–755.

[9] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017.
JSON: Data model, Query languages and Schema specification. In Proc. PODS.
123–135.

[10] Loreto Bravo, Wenfei Fan, Floris Geerts, and Shuai Ma. 2008. Increasing the
Expressivity of Conditional Functional Dependencies without Extra Complexity.
In Proc. ICDE. 516–525.

[11] Pavel Contos and Martin Svoboda. 2020. JSON Schema Inference Approaches.
In Proc. ER (Workshops). 173–183.

[12] Yuefeng Du, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu. 2017. Discovering
context-aware conditional functional dependencies. Frontiers Comput. Sci. 11, 4
(2017), 688–701.

[13] Dominik Durner, Viktor Leis, and Thomas Neumann. 2021. JSON Tiles: Fast
Analytics on Semi-Structured Data. In Proc. SIGMOD. 445–458.

[14] Wenfei Fan and Floris Geerts. 2012. Foundations of Data Quality Management.
Morgan & Claypool Publishers.

[15] Wenfei Fan, Floris Geerts, Laks V. S. Lakshmanan, and Ming Xiong. 2009. Dis-
covering Conditional Functional Dependencies. In Proc. ICDE. 1231–1234.

[16] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. 2011. Discovering
Conditional Functional Dependencies. IEEE Trans. Knowl. Data Eng. 23, 5 (2011),
683–698.

[17] Angelo Augusto Frozza, Ronaldo dos Santos Mello, and Felipe de Souza da Costa.
2018. AnApproach for Schema Extraction of JSON and Extended JSONDocument
Collections. In Proc. IRI. 356–363.

[18] Stefan Klessinger, Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2022. Ex-
tracting JSON Schemas with Tagged Unions. In Proc. DEco@VLDB.

[19] Stefan Klessinger, Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2022. Ex-
tracting JSON Schemas with Tagged Unions (Reproduction Package). https:
//doi.org/10.5281/zenodo.6985647

[20] Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2015. Schema Extraction and
Structural Outlier Detection for JSON-based NoSQL Data Stores. In Proc. BTW,
Vol. P-241. GI, 425–444.

[21] Jiuyong Li, Jixue Liu, Hannu Toivonen, and Jianming Yong. 2013. Effective
Pruning for the Discovery of Conditional Functional Dependencies. Comput. J.
56, 3 (2013), 378–392.

[22] Michael J. Mior. 2023. JSONoid: Monoid-based Enrichment for Configurable and
Scalable Data-Driven Schema Discovery. arXiv:2307.03113 [cs.DB]

[23] Felipe Pezoa, Juan L. Reutter, Fernando Suárez, Martín Ugarte, and Domagoj
Vrgoc. 2016. Foundations of JSON Schema. In Proc. WWW. 263–273.

[24] Joeri Rammelaere and Floris Geerts. 2018. Revisiting Conditional Functional
Dependency Discovery: Splitting the "C" from the "FD". In Proc. ECML PKDD.
552–568.

[25] Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesús García Molina. 2015.
Inferring Versioned Schemas from NoSQL Databases and Its Applications. In
Proc. ER. 467–480.

[26] William Spoth, Oliver Kennedy, Ying Lu, Beda Christoph Hammerschmidt, and
Zhen Hua Liu. 2021. Reducing Ambiguity in JSON Schema Discovery. In Proc.
SIGMOD. 1732–1744.

[27] Ivan Veinhardt Latták. and Pavel Koupil. 2022. A Comparative Analysis of JSON
Schema Inference Algorithms. In Proc. ENASE. 379–386.

[28] W3C. 2012. W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.
W3C Recommendation. https://www.w3.org/TR/xmlschema11-1/

https://json-schema.org/
https://www.schemastore.org/
https://www.schemastore.org/
https://developer.nytimes.com/docs/archive-product/1/overview
https://developer.nytimes.com/docs/archive-product/1/overview
https://www.warcraftlogs.com/api/docs
https://www.warcraftlogs.com/api/docs
https://arxiv.org/abs/2202.12849
https://arxiv.org/abs/2202.12849
https://doi.org/10.5281/zenodo.6985647
https://doi.org/10.5281/zenodo.6985647
https://arxiv.org/abs/2307.03113
https://www.w3.org/TR/xmlschema11-1/

	1 Problem and Motivation
	2 Background and Related Work
	3 Uniqueness and Approach
	4 Results and Contributions
	References

